• Title/Summary/Keyword: 알루미늄 파우더

Search Result 12, Processing Time 0.024 seconds

Aluminum Contents in Wheat Flour Foods (밀가루 식품의 알루미늄 함량)

  • Han, Sung-Hee;Kim, Joong-Man;Baek, Seung-Hwa
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.303-305
    • /
    • 1995
  • The purpose of this study was to investigate aluminum content by atomic absorption spectrophotometry after digestion with mixture of $HNO_3\;and\;HClO_4(2:1,\;v/v)$ on baking powder, wheat flours, noodles and baked foods. The contents of aluminum in baking powder, wheat flour, biscuit and snack, noodle, starch vermicelli, buckwheat vermicelli ranged from 1910 to 1948 mg/100g, 8.5 to 11.0 mg/100g, 15.3 to 19.2 mg/100g and 22.5 to 56.4 mg/100g, 29.7 to 58.5 mg/100g, 63.0 to 80.0 mg/100g, 33.1 to 46.3 mg/100g, 37.8 to 49.9 mg/100g, respectively. Aluminum contents in wheat flour foods were significantly different by added baking powder and different company(p<0.01).

  • PDF

Degasser for Products Produced Using Research to Improve the Quality (제품생산 시 탈가스 장치를 이용한 품질향상에 관한 연구)

  • Kang, Seog Joo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.8
    • /
    • pp.4713-4716
    • /
    • 2014
  • Several methods that have been used to manage a degasing process in recent years, such as an injection method that uses aluminum molten metal powder and chemicals, and the input method that supplies argon and nitrogen, or chlorine gas using a gas blow-tube. On the other hand, these methods have some problems, and it is a difficult process to handle pollution due to the production of considerable toxic gases, such as chlorine and fluoride gas, irregular effects, and lowering work efficiency due to the excessive processing time. The problems that are most fatal are the production of considerable sludge due to a reaction of aluminum molten metal with chemicals, loss of metals, and the decreasing life of refractory materials. To solve these problems, this study developed a technology that is related to continuous casting of molten aluminum metal and monolithic degasing apparatus.

A Study of Properties and Coating Natural Mineral Pumice Powder of in Korea (한국산 천연 광물 부석 파우더 코팅 및 특성에 관한 연구)

  • Kim, In-Young;Noh, Ji-Min;Nam, Eun-Hee;Shin, Moon-Sam
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.2
    • /
    • pp.498-506
    • /
    • 2019
  • This study is based on a coating method that provides utilization value as a micronised powder for cosmetic raw materials using natural minerals buried in Bonghwa, Gyeongsangbuk-do in Korea. The mineral powder name is called Buseok, and chemical name is pumice powder. The results of a study on the efficacy of cosmetics are reported by the development of particulate powder to assess the performance of this powder. First of all, in order to coat the surface of this powder with oil, aluminum hydroxide was coated on the particulate surface and then coated with alkylsilan. In addition, it was coated with vegetable oil to prevent condensation of the powder and increase the dispersion in the oil phase. First; the particle size of pumice powder was from 10 to 50mm having porous holes on the surface of the particles. Second; The components of this powder contained $SiO_2$, $Al_2O_3$, $Fe_2O_3$, MgO, CaO, $K_2O_2$, $Na_2O$, $TiO_2$, $TiO_2$, MnO, $Cr_2O_3$, $V_2O_5$. Third: The particles of this powder have a planetary structure and are reddish-brown with porosity through SEM and TEM analysis. Fourth; the far-infrared radiation rate of this parabolic powder was $0.924{\mu}m$, and the radiative energy was $3.72{\times}102W/m^2$ and ${\mu}m$. In addition, the anion emission is 128 ION/cc, which shows that the coating remains unchanged. Based on these results, it is expected to be widely applied to basic cosmetics such as BB cream, cushion foundation, powderfect, and other color-coordinated cosmetics, sunblock cream, wash-off massage pack as an application of cosmetics. (Small and Medium Business Administration: S2601385)

The Effect of Phases of Starting Materials on the Grain Size at High Pressure: the Comparison of Grain Size in the Samples Using Glass and Nano Powder as Starting Materials (고압환경에서의 결정 크기에 원시료의 상이 미치는 영향: 비정질 시료와 나노파우더를 이용한 시료의 결정 크기 비교)

  • Eun Jeong Kim;Alessio Zandona;Takehiko Hiraga;Sanae Koizumi;Nobuyoshi Miyajima;Tomoo Katsura;Byung-Dal So
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.36 no.3
    • /
    • pp.213-220
    • /
    • 2023
  • In this study, we report the effect of starting materials on the grain size in a multi-component system at high pressure experiments. We used two different starting materials, glass and nano powders, to synthesize bridgmanite in the reduced conditions in the presence of calcium-ferrite-phase MgAl2O4 to compared the grain size of synthesized samples. After synthesizing the sample at 40 GPa, 2000 K for 20 hrs, the sample from glass showed the grain size of 50-200 nm whereas the one from nano powders has ~500 nm of grains. This difference may come from 1) the temperature of 2000 K which is low enough for glass starting materials to make more crystal nucleis than to grow crystal size or 2) the possible difference in the redox state of starting materials. It is suggested that the using of nano powders is better to synthesize bigger grains in high pressure experiments with multi-component systems rather than using glass starting materials.

Effects of Ni layer as a diffusion barrier on the aluminum-induced crystallization of the amorphous silicon on the aluminum substrate (알루미늄 기판 상의 Ni layer가 a-Si의 AIC(Aluminum Induced Crystallization)에 미치는 영향)

  • Yun, Won-Tae;Kim, Young-Kwan
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.22 no.2
    • /
    • pp.65-72
    • /
    • 2012
  • Aluminum induced crystallization of amorphous silicon was attempted by the aluminum substrate. To avoid the layer exchange between silicon and aluminum layer, Ni layer was deposited between these two layers by sputtering. To obtain the bigger grain of the crystalline silicon, wet blasted silica layer was employed as windows between the nickel and a-Si layer. Ni obtained after the annealing treatment at $520^{\circ}C$ was found to be a promising material for the diffusion barrier between silicon and aluminum. One way to obtain bigger grain of crystalline silicon layer applicable to solar cell of higher performance was envisioned in this investigation.

One-Dimensional Modeling of Hydrogen Generator (수소발생기의 일차원 모델링)

  • Park, Jae Hyun;Lee, Hyojin;Valderrama, Edgar Willy Rimarachin;Yim, Chungsik;Yang, Heesung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.2
    • /
    • pp.74-86
    • /
    • 2018
  • This paper presents the one-dimensional model of a hydrogen generator, where the alkali solution was supplied from the top to the dry aluminum powders. Hydrogen was produced as the solution moved downward and reacted with aluminum. The species conservation equations were considered for the hydrogen gas and alkali solution, while the energy conservation equation was applied to the gas-liquid-solid mixture as a single medium. The gas rising velocity and liquid penetration velocity were also included in the theoretical approach. The developed code was validated with the experimental data of the hydrogen production amount and collector pressure. Additionally, the model successfully predicted the various reactor properties, such as the concentrations, volume fractions, and temperatures, and is expected to help significantly in the design of a novel hydrogen generator.

An Experimental Study on the Insulation Property of Light-Weight Foamed Concrete according to Foaming Agent Type (기포제 종류에 따른 경량기포콘크리트의 단열특성에 관한 실험적 연구)

  • Choi, Hun-Gug;Sun, Joung-Soo;Lee, Jung-Goo;Choi, Duck -Jin;Jeong, Ji-Yong;Kim, Jin-Man
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2007.11a
    • /
    • pp.27-30
    • /
    • 2007
  • Recently, use of light-weight panel is increasing in building. Styrofoam sandwich panel is inexpensive and it is excellent in insulation ability and constructability. But styrofoam of panel inside is low ignition point. Consequently, when panel is fired, it is occur in poisonous gas. On the other hand, light-weight foamed concrete is excellent in insulation ability, fire resistance due to inner pore. Properties of light-weight concrete is influenced by foaming agent type. Accordingly, this study investigate in insulation property of according to foaming agent type in order to using light-weight foamed concrete instead of styrofoam. As a results, Non-heating zone temperature of light-weight foamed concrete of using AP, FP are lower than light-weight foamed concrete of using AES. Light-weight foamed concrete of using AES, FP are satisfied with fire performance of two hours at foam ratio 50, 100. Light-weight foamed concrete of using AP is satisfied with fire performance of two hours at AP ratio 0.1, 0.15. Insulation property is better closed pore by made AP, FP than open pore by made AES.

  • PDF

A Study of Pressure Sensor for Environmental Monitoring (환경 모니터링을 위한 압력 센서 연구)

  • Hwang, Hyun-Suk;Choi, Won-Seok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.2
    • /
    • pp.225-229
    • /
    • 2011
  • In this study, capacitive type pressure sensors based on low temperature co-fired ceramics (LTCC) technology for environmental monitoring were demonstrated. The LTCC is one of promising technology than is based one since it has many advantages (e.g., low cost production, high manufacturing yields and easy realizing 3D structure etc.) for sensor application. Especially, it has good mechanical and chemical properties for robust environmental application. The 3D LTCC diaphragm with thickness of 400 ${\mu}m$ were fabricated by laminating 4 green sheets using commercial powder (NEG, MLS 22C). To evaluate the sensing properties of the different cavity areas, two types of diaphragm which had different cavity areas with 25, 49 $mm^2$ respectively, were fabricated. To realize capacitive type pressure sensor, the Au top electrode was fabricated using thermal evaporator and the bottome electrode was compressed using aluminium foil. The sensing properties of the fabricated sensors showed linear characteristic under different pressure (0~30 psi) using pressure measurement system.

A Study on Impact Monitoring Using a Piezoelectric Paint Sensor (압전 페인트 센서를 활용한 충격 모니터링 활용 방안)

  • Choi, Kyungwho;Kang, Donghoon;Park, Seung-Bok;Kang, Lae-Hyong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.5
    • /
    • pp.349-357
    • /
    • 2015
  • The piezoelectric paint sensor is a paint type sensor comprising of an epoxy and piezoelectric powder, which is the main component of a piezoelectric material. This sensor can be easily attached to any type of structure as compared to other sensors because it is viable to directly apply it on structures, as in the case with a typical paint. In this study, the capability of piezoelectric paint sensor for impact detection was evaluated. In Particular, the applications of the piezoelectric paint sensor for railroad vehicles were considered. There have been various cases reported about the damages caused by flying gravel to the under-cover of the railroad vehicle during operation. In order to prevent this, real-time monitoring of the large under-cover surface of the railroad vehicle is unavoidable. Under the assumption of vehicle application, sensor sensitivities were measured after multiple and prolonged exposure to thermal cycle environment $-20{\sim}60^{\circ}C$). Sensitivity evaluation of paint sensor under environmental conditions was conducted in an aluminum specimen. In results, despite the small variations in sensitivity, we could confirm the applicability of this paint sensor for impact detection even after a severe environmental exposure test.