• Title/Summary/Keyword: 알루미늄/유리섬유 적층재

Search Result 12, Processing Time 0.021 seconds

Stress Distribution and Crack Initiation Behavior due to the Defect Locations in Monolithic Aluminum and Al/Glass Fiber Laminates (단일재 알루미늄과 알루미늄/유리섬유 적층재의 결함 위치에 따른 응력분포 및 균열발생 거동)

  • Song Sam-Hong;Kim Jong-Sung;Oh Dong-Joon;Yoon Kwang-Joon;Kim Cheol-Woong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.2 s.233
    • /
    • pp.284-292
    • /
    • 2005
  • Material flaws in the from of pre-existing defects can severely affect the crack initiation. Stress distribution and crack initiation life of engineering materials such as monolithic aluminum alloy and Al/Glass fiber laminate may be different according to the defect location. The aim of this study is to evaluate effects of relative location of defects around the circular hole in monolithic aluminum and Al/Glass fiber laminates under cyclic bending moment. Stress distribution and crack initiation behavior near a circular hole are considered. Results of Finite Element (FE) model indicated the features of different stress field due to the relative defects positions. Especially, the defects positions at ${\theta}=0^{\circ}\;and\;{\theta}=30^{\circ}$ was strongly effective in stress concentration factor ($K_t$) and crack initiation behavior.

A Study on Improving the Fatigue Life for a Woven Glass Fabric/Epoxy Laminate Composite Applied to Railway Vehicles (철도차량용 직물 유리섬유/에폭시 적층 복합재의 피로수명 향상 방안 연구)

  • Ko, Hee-Young;Shin, Kwang-Bok;Kim, Jung-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.2
    • /
    • pp.203-209
    • /
    • 2010
  • In this study, the fatigue characteristics and life of a woven glass fabric/epoxy laminate composite applied to railway vehicles was evaluated. The fatigue test was conducted using a tension-tension load with a stress ratio R of 0.1 and frequency of 5 Hz. Two types of woven glass fabric/epoxy laminate composite was used in the fatigue test: with and without carbon/epoxy ply reinforcement. In addition, the fatigue life of the woven glass fabric/epoxy laminate composite was compared with that of aluminum 6005, which is used in the car body and underframe structures of railway vehicles. The test results showed that the failure strength and life of the woven glass fabric/epoxy laminate composite reinforced with three carbon/epoxy plies had a remarkable improvement compared with that of the bare specimen without reinforcement.

A Study of Property F.R.P Structure Strength According to the Direction of Lay-up in the Small Ship (적층 방향에 따른 F.R.P 구조강도특성에 관한 연구)

  • 고재용;배동균;윤순동
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2002.11a
    • /
    • pp.101-105
    • /
    • 2002
  • FRP(Fiber glass reinforced plastics) is compound with materials, which are created to combine each other materials, of which nature of mechanical and chemical are different. Even though the weight and the thickness are identic, its physical figure of characteristic changes with consisting of lay-up and work situation. It is also a method of creating after manufacturing of mould. It has feature that manufacturing of FRP runs parallel design of material with design of structure simultaneously. The rule of FRP structure is distinguished from the length of a ship and it is hard to catch the feature of structure mechanics due to identical formula and figure used for it regardless of the shape of a ship or the speed. This studying, basing on a small FRP ship, will show te fundamental data needed to design of structure analysing the feature of intensity with direction, the method of Lay-up, and the characteristic of materials of FRP.

  • PDF

Acoustic Emission Characteristics of Notched Aluminum Plate Repaired with a Composite Patch (복합재 패치로 보수된 노치형 알루미늄 합금 평판의 음향방출 특성)

  • Yoon, Hyun-Sung;Choi, Nak-Sam
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.1
    • /
    • pp.53-61
    • /
    • 2011
  • Edge notched A16061-T6 aluminum was repaired with a GFRP composite patch as a function of the number of stacking, Damage progress of specimen for tension load has been monitored by acoustic emission(AE), AE energy rate, hit rate, amplitude, waveform and 1st peak frequency distribution were analyzed. Fracture processes were classified into Al cracking, Fiber breakage, Resin cracking and Delamination. Displacement of a specimen can be divided into Region I, II and ill according to acoustic emission characteristics. Region II where the patch itself was actually fractured was focused on to clarify the AE characteristics difference for the number of stacking.

The Effect of Defect Location Near a Circular Hole Notch on the Relationship Between Crack Growth Rate (da/dN) and Stress Intensity Factor Range (δK) - Comparative Studies of Fatigue Behavior in the Case of Monolithic Al Alloy vs. Al/GFRP Laminate - (원공노치 인근에 발생한 결함의 위치변화가 균열성장률(da/dN) 및 응력확대계수범위(δK)의 관계에 미치는 영향 - 단일재 알루미늄과 Al/GFRP 적층재의 피로거동 비교 -)

  • Kim, Cheol-Woong;Ko, Young-Ho;Lee, Gun-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.3 s.258
    • /
    • pp.344-354
    • /
    • 2007
  • The objective of this study is to investigate the effect of arbitrarily located defect around the circular hole in the aircraft structural material such as Al/GFRP laminates and monolithic Al alloy sheet under cyclic bending moment. The fatigue behavior of these materials may be different due to the defect location. Material flaws in the from of pre-existing defects can severely affect the fatigue crack initiation and propagation behavior. The aim of this study is to evaluate effects of relative location of defects around the circular hole in monolithic Al alloy and Al/GFRP laminates under cyclic bending moment. The fatigue behavior i.e., the stress concentration factor($K_t$), the crack initiation life($N_i$), the relationship between crack length(a) and cycles(N), the relationship between crack growth rate(da/dN) and stress intensity factor range(${\Dalta}K$) near a circular hole are considered. Especially, the defects location at ${\theta}_1=0^{\circ}\;and\;{\theta}_2=30^{\circ}$ was strongly effective in stress concentration factor($K_t$) and crack initiation life($N_i$). The test results indicated the features of different fatigue crack propagation behavior and the different growing delamination shape according to each location of defect around the circular hole in Al/GFRP laminates.

Acoustic Emission Characteristics and Fracture Behaviors of GFRP-Aluminum Honeycomb Hybrid Laminates under Compressive and Bending Loads (GFRP-알루미늄 하니컴 하이브리드 적층판의 압축 및 굽힘 파괴거동과 음향방출해석)

  • Lee, Ki-Ho;Gu, Ja-Uk;Choi, Nak-Sam
    • Composites Research
    • /
    • v.22 no.6
    • /
    • pp.23-31
    • /
    • 2009
  • This paper investigated acoustic emission (AE) characteristics in association with various fracture processes of glass fiber reinforced plastic skin/ aluminum honeycomb core (GF-AH) hybrid composites under compressive and bending loads. Various failure modes such as skin layer fracture, skin/core interfacial fracture, and local plastic yield buckling and cell wall adhesive fracture occurring in the honeycomb cell wall were classified through the fracture identification in association with the AE frequency and amplitude analysis. The distribution of the event-rate in which it has a high amplitude showed a procedure of cell wall adhesive fracture, skin/core interfacial debonding and fiber breakage, whereas distribution of different peak frequencies indicated the plastic deformation of aluminum cell wall and the friction between honeycomb walls. Consequently, the fracture behaviors of GF-AH hybrid composites could be characterized through a nondestructive evaluation employing the AE technique.

The Variation of Stress Concentration Factor and Crack Initiation Behavior on the Hole Defects Around the Rivet Hole in a Aircraft Materials (항공재료 리벳홀에 인접한 원공결함의 위치에 따른 응력집중계수의 변화와 균열발생거동)

  • Song, Sam-Hong;Kim, Cheol-Woong;Kim, Tae-Soo;Hwang, Jin-Woo
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.381-388
    • /
    • 2003
  • The material deficiencies in the form of pre-existing defects can initiated cracks and fractures. The stress distribution and fatigue crack initiation life of engineering materials may be associated with the size, the shape and the relative location of defects contained in the component. The objective of this study is to investigate the effect of arbitrarily located hole defect around the rivet hole of a wing section in monolithic aluminum and Al/GFRP laminates under cyclic bending moment during a service load. The stress distribution and the fatigue crack initiation behavior near a rivet hole of on the relationships between stress concentration factor ($K_t$) and relative position of defects were considered. The test results indicated the features of different stress field. Therefore, the stress concentration factor ($K_t$) and the fatigue crack initiation behavior was illustrated different behavior according to each position of hole defect around the rivet hole in monolithic aluminum and Al/GFRP laminates.

  • PDF

The Analysis of Fatigue Behavior Using the Delamination Growth Rate(dAD/da) and Fiber Bridging Effect Factor(FBE) in Al/GERP Laminates (층간분리성장률(dAD/da)과 섬유가교효과인자(FBE)를 이용한 Al/GFRP 적층재의 피로거동 해석)

  • Song, Sam-Hong;Kim, Cheol-Woong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.2
    • /
    • pp.317-326
    • /
    • 2003
  • The influence of cyclic bending moment on the delamination and the fatigue crack propagation behavior in Al/GFRP laminate such as the wing section was investigated. The main objective of this study was to evaluate the relationship between crack profile and delamination behavior. And a propose parameter on the delamination growth rate(d $A_{D}$/da) of Al/GFRP laminates with a saw-cut using relationship between delamination area( $A_{D}$) and cycles(N), crack length(a), stress intensity factor range($\Delta$K). Also, the fiber bridging effect factor( $F_{BE}$ ) was propose that the fiber bridging modification factor($\beta$$_{fb}$ ) to evaluate using the delamination growth rate(d $A_{D}$/da). The shape and size of the delamination zone formed along the fatigue crack between aluminum alloy sheet. Class fiber-adhesive layer were measured by an ultrasonic C-scan image. The shape of delamination zone turns out to be semi-elliptic with the contour decreased non-linearly toward the crack tip. It represents that relationship between crack length and delamination growth rate(d $A_{D}$/da) were interdependent by reciprocal action, therefore it's applicable present a model for the delamination growth rate(dA/sib D//da) in Al/GFRP laminates.minates.s.

An Evaluation of Structural Integrity and Crashworthiness of Automatic Guideway Transit(AGT) Vehicle made of Sandwich Composites (샌드위치 복합재 적용 자동무인경전철 차체 구조물의 구조 안전성 및 충돌 특성 평가 연구)

  • Ko, Hee-Young;Shin, Kwang-Bok;Cho, Se-Hyun;Kim, Dea-Hwan
    • Composites Research
    • /
    • v.21 no.5
    • /
    • pp.15-22
    • /
    • 2008
  • This paper describes the results of structural integrity and crashworthiness of Automatic Guideway Transit(AGT) vehicle made of sandwich composites. The applied sandwich composite of vehicle structure was composed of aluminum honeycomb core and WR580/NF4000 glass fabric/epoxy laminate composite facesheet. Material testing was conducted to determine the input parameters for the composite facesheet model, and the effective equivalent damage model fer the orthotropic honeycomb core material. The finite element analysis using ANSYS v11.0 was dont to evaluate structural integrity of AGT vehicle according to JIS E 7105 and ASCE 21-98. Crashworthiness analysis was carried out using explicit finite element code LS-DYNA3D with the lapse of time. The crash condition was frontal accident with speed of 10km/h at rigid wall. The results showed that the structural integrity and crashworthiness of AGT vehicle were proven under the specified loading and crash conditions. Also, the modified Chang-Chang failure criterion was recommended to evaluate the failure modes of composite structures after crashworthiness event.

A Study on the Crashworthiness Evaluation and Performance Improvement of Tilting Train Carbody Structure made of Sandwich Composites (틸팅열차의 샌드위치 복합재 차체 구조물에 대한 충돌안전도 평가 및 향상방안 연구)

  • Jang, Hyung-Jin;Shin, Kwang-Bok;Han, Sung-Ho
    • Composites Research
    • /
    • v.24 no.5
    • /
    • pp.9-16
    • /
    • 2011
  • This paper describes the crashworthiness evaluation and performance improvement of tilting train made of sandwich composites. The applied sandwich composite of carbody structure was composed of aluminum honeycomb core and glass/epoxy & carbon/epoxy laminate composite facesheet. Crashworthiness analysis of tilting train was carried out using explicit finite element analysis code LS-DYNA 3D. The 3D finite element model and 1D equivalent model were applied to save the finite element modeling and calculation time for crash analysis. The crash conditions of tilting train were conducted according to four crash scenarios of the Korean railway safety law. It found that the crashworthiness analysis results were satisfied with the performance requirements except the crash scenario-2. In order to meet the crashworthiness requirements for crash scenario-2, the stiffness reinforcement for the laminate composite cover and metal frames of cabmask structure was proposed. Consequentially, it has satisfied the requirement for crash scenario-2.