대상 지점의 수질 예측은 단순한 모델로 설명하는데 쉽지 않을 뿐만 아니라 많은 오차를 내포하고 있다. 그러나 최근, 신경회로망, 퍼지 논리, 전문가 시스템 및 유전자 알고리즘과 같은 인공지능이 대두되면서 복잡한 비선형 과정들을 나타낼 수 있게 되었다. 나아가 진정한 인공 지능을 실현하기 위해서는 신경회로망, 퍼지 논리, 전문가 시스템 및 유전자 알고리즘을 보다 효과적으로 이용하고 통합해야 가능할 것으로 기대된다. 본 연구에서는 유전자 알고리즘(Genetic Algorithm)을 T-S 퍼지시스템(Takagj-Sugeno Fuzzy system)의 삼각형 멤버쉽 함수 형태와 규칙 베이스를 최적화하기 위한 도구로 사용하였으면, 예측은 T-S 퍼지 시스템을 이용하여 실시하였다. 대상지점은 영산강 유역의 나주지점을 선정하여 유량자료 및 수질자료를 이용하여 GA와 T-S 퍼지 시스템의 결합에 의해 수질 예측을 실시할 결과 돌연변이율$(P_m)$$0.05\~0.1$에서 우수한 결과를 얻을 수 있었다.
상수관망시스템은 정수장으로부터 각 수요처에 음용수를 공급하기 위한 사회기반시설물이며, 광범위한 지역에 걸쳐 주로 지하에 시설물이 매설되어 있다. 상수관망시스템을 설계하고 운영함에 있어 노후화로 인한 유수율 저하, 갑작스런 수요량의 증가, 관로 파손 등 비정상상황에의 용수공급을 항상 대비하여야 하며, 이를 통한 지속적인 관리와 개량이 필요하다. 상수관망시스템에서 발생할 수 있는 다양한 비정상상황들 중 상수관망시스템 내 관로가 파손될 경우, 파손 관로의 보수 혹은 교체를 위해서는 해당 관로의 용수흐름을 일시적으로 차단할 필요가 있다. 이 과정에서 파손관로와 인접한 밸브를 차폐하게 되며, 이로 인해 용수공급이 중단되는 단수구역이 발생하게 된다. 단수구역은 파손 관로를 차폐함으로써 파손 관로와 함께 용수공급이 차단되는 직접고립지역과 직접고립지역으로 인해 의도치 않게 수원으로부터 물 공급이 차단되는 간접고립지역으로 구분할 수 있다. 따라서, 관 파손에 의한 단수용량을 정확히 산정하기 위해서는 시스템 내 설치된 밸브의 개수와 위치에 따른 직, 간접고립지역(단수구역)을 정확하게 산정할 필요가 있다. Jun and Loganathan(2007)은 단수구역을 직접고립지역과 간접고립지역으로 구분하여 정의하고 각각을 탐색하는 알고리즘을 제시한 바 있다. 본 연구에서는 기존 연구에서 제시한 간접고립지역 탐색 방법의 문제점을 파악하고, 이를 개선한 새로운 알고리즘을 제안 및 검증하였다. 또한, 개선된 알고리즘을 이용하여 상수관망시스템 내 최적 밸브위치를 결정하기 위해 단수용량과 밸브설치비용을 동시에 최소화하는 다목적 최적화 모형을 개발하였으며, 예시 관망을 이용하여 모의를 수행하고 결과를 분석하였다.
본 논문에서는 사이클로트론 전자석의 설계과정을 체계화하고, 자기장 최적화 과정을 순차적 근사화 기법을 이용하여 설계를 진행하였다. 설계하는 전자석은 방사성동위원소생산을 목적으로하는 PET(Positron Emission Tomography) 사이클로트론 이며, 크기를 줄이고 동위원소의 효율적인 생산을 위해 에너지대역은 10MeV로 선정하였다. 설계과정은 실험계획법 중 하나인 LHS(Latin Hypercube Sampling) 기법을 통해 샘플 데이터를 구성하고, 이를 바탕으로 크리깅을 이용해 근사모델을 구성한다. 근사 모델과 진화 알고리즘을 이용해 목적에 맞는 최적의 형상을 찾을 수 있다. 이러한 과정을 반복함으로써 점진적으로 목적에 부합하는 형상을 찾을 수 있다. 각각의 형상의 성능을 판단하는 목적함수를 단계별로 규칙을 정함으로써 결과의 신뢰도를 높인다. 이로써 시간적 효율을 증대시키고 전문지식이 부족한 설계자도 고성능의 형상을 얻을 수 있다. 최적화과정은 STEP1과 STEP2로 나누어 진행되며, STEP1에서는 초기사이클로트론 전자석을 설계하고, 자기장 최적화를 진행한다. STEP2에서는 빔 시뮬레이션 및 분석을 통하여 최적화를 진행하고, 최종적으로 전자석모델을 완성한다.
지표수의 유출과정을 설명하는 과정에서 중요인자이며, 생태수문학의 핵심변수이자 기상모형의 중요한 입력변수인 토양수분의 공간적 시간적 특징들은 강우 및 지하수와 토양수분간의 순환 구조를 규명하는데 매우 중요하다. 가장 널리 쓰이는 토양 수분 측정 장비인 TDR 장비 매설에 앞서 대상유역 선정에 대한 여러 가지 고려사항을 검토하고 수치지형 분석 등을 통한 사전분석을 실시하였다. 대상유역을 선정하기 위해서는 대상유역의 자료획득의 용이함, 지정학적, 시스템 운영적 측면에서의 가용성, 그리고 정밀측량 및 부수적요인 등 여러 요소의 고려가 요구된다. 청미천 유역을 대상으로 약 21 개의 대상후보사면을 정밀조사 하였으며, 충청북도 음성군 수레의산 청소련 수련원내의 산지 사면을 측정대상 사면으로, 지정학적 위치, 식생분포, 지질구조 및 심도 등의 토양특성의 고려를 통해서 선정하였다. 또한 대상 사면에 흐름 발생 및 분포를 계산하기 위해서 대상사면의 지표 및 기반암 표고를 정밀 측량하였으며, 기반암 또는 풍화대까지의 깊이를 실측하여 지표면 및 지하면의 수치지형 모형을 구축하였다. 대상사면 및 지하면에 대하여 표고수치지형모형(Digital Elevation Model:DEM)으로 도식한 후 흐름 발생 공간 분포를 계산하였다. 다양한 흐름 발생 알고리즘으로 기여사면적과 지형습윤지수를 계산하였다. 분배알고리즘의 의해 도출된 지형인자들로 인한 흐름발생 공간적 분포특성을 비교하여 센서의 매설 위치를 결정하였다. 센서 매설 위치에 대한 토양시료를 채취하여 토성을 분석한 결과는 미국 농무성 기준에 의한 분류로는 사양토로, 국제토양학회의 분류기준에 따르면 양토로 분류되었다. 대상사면의 유효입력강우를 확보하기위해서 개방공간인 수레의산 청소년수련원과 대상산림의 Canopy하부에 각각 강수측정 시스템을 설치하였고 약 6개월간 성공적으로 자료를 획득하였다.
본 논문에서는 동물소리 인식시스템을 위하여 최대 빈도모델 탐색 알고리즘을 고안하고 이를 이용한 소리모델을 생성하는 방법을 제안하였다. 소리모델 생성 방법은 동물종의 소리 데이터로부터 학습과정, 비터비 탐색과정 및 최대 빈도모델 탐색과정을 반복하면서 HMM(Hidden Makcov Model)모델의 구조(상태의 수와 GMM의 수)를 탐색하여 최적의 인식률을 갖는 모델집합이 생성하는 방법이다. 최대 빈도모델 탐색 알고리즘은 입력 소리 데이터를 비터비(Viterbi) 알고리즘으로 탐색하여 모델리스트를 생성하고 이 리스트 중에서 최대 빈도수의 모델을 탐색하여 최종 인식결과로 결정하는 방법이다. 알고리즘에서 소리특징으로 MFCC(Mel Frequency Cepstral Coefficient), 모델형식으로 HMM을 이용하고 C# 프로그래밍언어로 구현 하였다. 알고리즘의 성능을 평가하기 위하여 27종의 동물소리를 선정하고 실험을 하였으며 27개의 HMM 모델집합이 97.29 퍼센트의 인식률로 생성됨을 확인하였다.
인공지능의 사회적수용도가 증가하면서 머신러닝 기법을 기업에 적용하는 사례가 증가하고 있다. 머신러닝 기법의 선정에는 주로 정확성이나 해석 가능성 등 기술적 요인이 주로 기준이 되어왔다. 그러나 머신러닝 채택의 성공은 개발부서, 사용부서, 리더십과 조직문화 등 경영관리 요인도 영향을 주기도 한다. 아쉽게도 기술적 요인과 경영관리적 요인이 함께 고려된 머신러닝 선정의 성공 요인을 이해하는 통합 연구가 거의 존재하지 않는다. 이에 본 논문의 목적은 기업 내 머신러닝 선정을 이해하기 위해 John Rice의 algorithm selection process model과 task-technology fit, 그리고 IS Success Model 이론을 결합한 기술-경영관리 통합 모형을제안하고 실증적 분석을 하는 것이다. 머신러닝을 도입한 국내 기업 240곳을 대상으로 설문 분석을 실시한 결과 알고리즘 품질과 데이터 품질이 높을수록 문제-알고리즘 적합성에 높게 영향을 주는 것으로 나타났으며, 문제-알고리즘 적합성은 조직의 생산성과 혁신성에도 유의한 영향을 미치는 것으로 검증되었다. 또한 외주화와 경영진 지원이 머신러닝 시스템 품질에 긍정적인 영향을 미치고, 데이터 중심 경영 및 동기화와 같은 조직문화 요인은 활용성과에 높은 영향을 미치는 것으로 확인되었다.
합리적 통행경로는 "경로를 노드 또는 링크의 순서로 표현할 때, 경로를 구성하는 노드의 반복은 존재해도 링크의 반복은 존재하지 않는다"는 원리에 근거한다. 최적경로 탐색과정에서 합리적 통행현상을 포함하는 방법은 링크로 구성된 표지(Link-Based Label)를 적용하는 방안이 적용하기 용이하다. 링크표지를 활용하는 경우 링크의 중복 표현을 허용되지 않는 상황에서 노드의 중복표현이 가능하여 합리적인 통행을 원칙적으로 보장될 뿐만 아니라 목적지에서 출발지로 경로를 역 추적(Backward Trace)하는 과정에서 전 링크(Pvevious Link)의 단일정보만 이용하므로 Bellman의 최적원리(Optimality Condition)에 의한 최적해(Optimal Solution)가 보장된다. 본 연구는 다수의 경로를 선정함에 있어 합리적 통행행태를 고려하기 위한 링크표지고정방식(Link-Based Label Setting)을 제안한다. 기존에 표지고정(Label Setting)을 기반으로 제안되었던 노드기반 다수경로알고리즘을 기반으로 링크표지로 전환하는 방안을 개발한다. 또한 알고리즘의 대규모 교통망에 적용한 수행결과를 통해 대안경로정보제공을 위한 현실적용의 문제점을 도출하고, 도로의 연속주행을 보장하려는 운전자의 경로선택행태를 반영하는 방안에 대해 검토한다.
정보화 시대에 있어 개인 인증 기술에 대한 요구는 날로 증가되고 있으며 그 중에서도 지문 인식 기술은 정확도, 수행 속도, 구현 비용 등 모든 평가 항목에 있어 가장 현실성 있는 수단으로 주목 받고 있다. 본 논문에서는 전산 환경에 적합하도록 무 잉크 방식의 압착 날인을 통하여 획득된 지문 영상을 이용한 온라인 지문 인식 시스템의 설계와 구현을 목표로 한다. 지문 인식은 크게 두 가지 과정으로 이루어 지며 이를 특징점 추출과 특징점 정합이라 한다. 본 논문에서는 이러한 과정 중에서 특징점 정합의 정합의 성능과 속도의 개선을 위한 새로운 알고리즘을 제안 한다. 특징점 정합 과정은 다시 정렬 기준점 선정 과정과 정렬 후 대응점 확인과정이 있으며 정렬 과정의 최적화 여부가 전체 수행 속도에 미치는 영향이 가장 크게 된다. 제안된 정렬 기준점 선정 알고리즘은 탐색 공간의 최소화와 등록 지문과 입력 지문간의 비선형 왜곡에도 강인함을 보였다. 전체 시스템의 성능 검증을 위하여 체계적인 샘플링을 통하여 채취된 데이터 베이스을 이용하였다. 팬티엄시스템에서 평균 정합 속도 1.55초를 기록하였으며, 0.05%의 FAR(False Acceptance Rate)에서 8.83%의 FRR(False Rejection Rate)의 오 인식율을 얻을 수 있었다.
한정된 용량의 배터리에 의존하는 무선 Ad-hoc 네트워크(MANET)에서는 에너지 효율을 높이기 위한 다양한 클러스터링 기법과 라우팅 알고리즘이 연구되고 있다. 이러한 무선 Ad-hoc 네트워크에서는 에너지 효율이 높은 클러스터 기반의 라우팅 알고리즘이 많이 사용된다. 그러나 일반적인 클러스터 방식에 따른 라우팅 알고리즘에서는 클러스터 헤드 노드에 부하가 집중되어 에너지 소모가 많은 문제점을 가진다. 이 문제를 보완하기 위해서 클러스터 헤드 노드의 재 선출을 통해 에너지 소모를 분산하는 동적 클러스터링 방식이 사용되고 있다. 그러나 동적 클러스터링 방식 또한 높은 빈도의 클러스터 재형성 과정에서 많은 에너지를 소모하는 문제점이 있다. 즉, 지금까지 연구되어온 알고리즘은 클러스터 구성에 대한 효율적인 알고리즘을 제시하고 있지만 불필요한 에너지 소모를 최소화하는 최적의 헤드 노드 선정 방법과 클러스터 관리를 통하여 에너지 효율을 높일 수 있는 해결책을 제시하지 않았다. 따라서 본 논문에서는 위의 클러스터 문제를 해결하기 위해 TICC(Time Interval Clustering Control) 알고리즘 기법을 제안한다. 제안된 TICC은 각 노드의 에너지 속성 값에 따라 에너지 Level을 분류하고 분류된 에너지 Level에 따라 타이밍을 고려한 클러스터링 및 노드 관리방법이다. 이러한 TICC기법을 적용하여 실험을 하였고 결과적으로 클러스터 전체의 에너지 효율을 향상되고 Lifetime이 증가함을 보였다.
본 논문에서는 도심항공 모빌리티(UAM)를 우리나라 수도권에서 운용하기 위해 필요한 수직이착륙장의 위치를 선정하고 평가하였다. 통근통학 인구수 조사 데이터를 이용해 수요 데이터를 분석하였으며, MATLAB을 이용해 지도상에 표현하였다. 또한 데이터들을 군집화하기 위해 MATLAB에 내장되어있는 K 평균 알고리즘 함수를 이용해 수직이착륙장의 위치로 선정할 군집의 중심을 파악하였으며, 실루엣 기법을 이용해 군집화의 정확도와 신뢰도를 평가하였다. 또한 선정된 수직이착륙장의 위치가 실제 수직이착륙장 설치에 적합한지 위성 지도를 이용해 확인하였으며, 그 위치가 설치 불가능한 위치에 있는 경우 위치 조정 과정을 통해 최종 수직이착륙장의 위치를 선정하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.