• 제목/요약/키워드: 알고리즘 모델

검색결과 6,182건 처리시간 0.035초

Support vector regression과 최적화 알고리즘을 이용한 하천수위 예측모델 (River stage forecasting models using support vector regression and optimization algorithms)

  • 서영민;김성원
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2015년도 학술발표회
    • /
    • pp.606-609
    • /
    • 2015
  • 본 연구에서는 support vector regression (SVR) 및 매개변수 최적화 알고리즘을 이용한 하천수위 예측모델을 구축하고 이를 실제 유역에 적용하여 모델 효율성을 평가하였다. 여기서, SVR은 하천수위를 예측하기 위한 예측모델로서 채택되었으며, 커널함수 (Kernel function)로서는 radial basis function (RBF)을 선택하였다. 최적화 알고리즘은 SVR의 최적 매개변수 (C?, cost parameter or regularization parameter; ${\gamma}$, RBF parameter; ${\epsilon}$, insensitive loss function parameter)를 탐색하기 위하여 적용되었다. 매개변수 최적화 알고리즘으로는 grid search (GS), genetic algorithm (GA), particle swarm optimization (PSO), artificial bee colony (ABC) 알고리즘을 채택하였으며, 비교분석을 통해 최적화 알고리즘의 적용성을 평가하였다. 또한 SVR과 최적화 알고리즘을 결합한 모델 (SVR-GS, SVR-GA, SVR-PSO, SVR-ABC)은 기존에 수자원 분야에서 널리 적용되어온 신경망(Artificial neural network, ANN) 및 뉴로퍼지 (Adaptive neuro-fuzzy inference system, ANFIS) 모델과 비교하였다. 그 결과, 모델 효율성 측면에서 SVR-GS, SVR-GA, SVR-PSO 및 SVR-ABC는 ANN보다 우수한 결과를 나타내었으며, ANFIS와는 비슷한 결과를 나타내었다. 또한 SVR-GA, SVR-PSO 및 SVR-ABC는 SVR-GS보다 상대적으로 우수한 결과를 나타내었으며, 모델 효율성 측면에서 SVR-PSO 및 SVR-ABC는 가장 우수한 모델 성능을 나타내었다. 따라서 본 연구에서 적용한 매개변수 최적화 알고리즘은 SVR의 매개변수를 최적화하는데 효과적임을 확인할 수 있었다. SVR과 최적화 알고리즘을 이용한 하천수위 예측모델은 기존의 ANN 및 ANFIS 모델과 더불어 하천수위 예측을 위한 효과적인 도구로 사용될 수 있을 것으로 판단된다.

  • PDF

과학 모델의 알고리즘의 학습이 학생들의 과학 개념 이해에 미치는 영향: 산-염기 개념을 중심으로 (Effect of Learning Scientific Model's Algorithm on Student's Understanding of Scientific concept : Focus on the Acid-Base Concept)

  • 백성혜;박철용;최희
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2017년도 제56차 하계학술대회논문집 25권2호
    • /
    • pp.384-385
    • /
    • 2017
  • 과학 모델은 복잡한 자연현상을 단순화하고 패턴화한 것이다. 따라서 과학 모델은 특정한 알고리즘을 가지며, 과학 모델에 대한 이해는 모델이 갖는 특정한 알고리즘에 대한 이해와 직접적으로 관련되어있다. 본 연구에서는 많은 학생들이 대안 개념을 가지고 있는 산-염기를 주제로 하여, 이 모델이 가지는 알고리즘을 학습하기 위한 프로그램을 설계하고, 알고리즘을 학습 하였을 때 과학 학습에 미치는 효과를 확인하였다. 고등학생 3학년을 대상으로 4차시로 수업을 진행하였으며, 수업의 사전과 사후 검사를 실시하여, 학생들의 모델에 대한 이해를 분석하였다. 수업 결과, 학생들은 모델의 정의와 화학반응 및 화학평형의 정성적인 부분에서는 이해의 향상을 보였으나, 정량적인 부분에는 효과를 보이지 못하였다. 이는 화학이 많은 수의 입자를 고려해야 하는 독특한 과목의 특성에 기인하며, 이를 보완하기 위하여 추후 컴퓨터프로그램을 교육 도구로 사용하는 수업을 통해 후속연구를 진행하고자 한다.

  • PDF

퍼지-뉴럴 네트워크 구조의 최적 동정 (Optimial Identification of Fuzzy-Neural Networks Structure)

  • 윤기찬;박춘성;안태천;오성권
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 춘계학술대회 학술발표 논문집
    • /
    • pp.99-102
    • /
    • 1998
  • 본 논문에서는 복잡하고 비선형적인 시스템의 최적 모델링을 우해서 지능형 퍼지-뉴럴네트워크의 최적 모델 구축을 위한 방법을 제안한다. 기본 모델은 퍼지 추론 시스템의 언어적인 규칙생성의 장점과 뉴럴 네트워크의 학습기능을 결합한 FNNs 모델을 사용한다. FNNs 모델의 퍼지 추론부는 간략추론이 사용되고, 학습은 요류 역전파 알고리즘을 사용하여 다른 모델들에 비해 학습속도가 빠르고 수렴능력이 우수하다. 그러나 기본 모델은 주어진 시스템에 대하여 퍼지 공간을 균등하게 분할하여 퍼지 소속을 정의한다. 이것은 비선형 시스템의 모델링에 있어어서 성능을 저하시켜 최적의 모델을 얻기가 어렵다. 논문에서는 주어진 데이터의 특성을 부여한 공간을 설정하기 위하여 클러스터링 알고리즘을 사용한다. 클러스터링 알고리즘은 주어진 시스템에 대하여 상호 연관성이 있는 데이터들끼리 특성을 나누어 몇 개의 클래스를 이룬다. 클러스터링 알고리즘을 사용하여 초기 FNNs 모델의 퍼지 공간을 나누고 소속함수를 정의한다. 또한, 최적화 기법중의 하나로 자연선택과 자연계의 유전자 메카니즘에 바탕을 둔 탐색 알고리즘인 유전자 알고리즘을 사용하여 주\ulcorner 진 모델에 대하여 최적화를 수행한다. 또한 본 연구에서는 학습 및 테스트 데이터의 성능 결과의 상호 균형을 얻기 위한 하중값을 가긴 성능지수가 제시된다.

  • PDF

탁수의 remote reflectance 모델과 부유물 알고리즘 개발

  • 안유환;문정언
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2000년도 춘계 학술대회 논문집 통권 3호 Proceedings of the 2000 KSRS Spring Meeting
    • /
    • pp.26-30
    • /
    • 2000
  • 위성에 의한 탁수 원격탐사 알고리즘 개발을 위하여 탁수발생 해역의 remote reflectance를 광합성 색소인 클로로필, 부유물, 용해유기물 농도 등으로 모델화 하였다. 반사도 모델 검정하기 위하여 현장의 관측 값과 비교하였으며, 반사도 모델에 의한 알고즘과 현장에서 얻어진 통계적 관계와 비교하였다. 모델의 탁도 알고리즘과 현장의 탁도 알고리즘 사이에는 조금의 차이가 있었으나 거의 유사한 결과를 얻을 수 있었다. 개발된 알고리즘을 SeaWiFS 위성자료에 적용하여 한 빈도 주변해역의 해수 탁도를 분석한 결과 현장 관측치와 잘 일치하는 아주 우수한 결과를 보여주었다.

  • PDF

진화론적으로 최적화된 Context-based RBF 뉴럴 네트워크 설계 (Design of Genetically Optimized Context-based RBFNN)

  • 박호성;오성권;김현기
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2009년도 정보 및 제어 심포지움 논문집
    • /
    • pp.258-260
    • /
    • 2009
  • 본 논문에서는 최적화 알고리즘인 유전자 알고리즘과 context-based FCM 클러스터링 방법을 이용하여 새로운 형태의 RBF 뉴럴 네트워크의 포괄적인 설계 방법론을 소개한다. 제안된 구조는 클러스터링 기법을 기반하여 사용된 데이터의 특성에 효과적인 모델을 구축하고자 한다. 또한 유전자 알고리즘을 이용하여 모델의 최적화에 주요한 영향을 미치는 파리미터들(-은닉층에서의 contex의 수, contex에 포괄되는 노드의 수, 그리고 contex에 입력되는 입력변수)을 동조한다. 제안된 모델의 설계 공정은 1) K-means 클러스터링을 통한 context fuzzy set에 대한 정의와 설계, 2) context-based fuzzy clustering에 대한 모델의 적용과 이에 따른 모델 구축의 효율성, 3) 유전자 알고리즘을 통한 모델 최적화를 위한 파라미터들의 최적화와 같은 단계로 구성되어 있다. 구축된 RBF 뉴럴 네트워크의 후반부 다항식에 대한 parameter들은 성능지수를 최소화하기 위해 Least Square Method에 의해서 보정된다. 본 논문에서는 모델을 설계함에 있어서 체계적인 설계 알고리즘을 포괄적으로 설명하고 있으며, 더 나아가 제안된 모델의 성능을 다른 표준적인 모델들과 대조함으로써 제안된 모델의 우수성을 나타내고자 한다.

  • PDF

예측신경회로망 모델 음성인식기의 변별력있는 학습 알고리즘 (A Discriminative Training Algorithm for Speech Recognizer Based on Predictive Neural Network Models)

  • 나경민
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1993년도 학술논문발표회 논문집 제12권 1호
    • /
    • pp.242-246
    • /
    • 1993
  • 예측신경회로망 모델은 다층 퍼셉트론을 연속되는 음성특징 벡터간의 비선형예측기로 사용하는 동적인 음성인식 모델이다. 이 모델은 음성의 동적인 특성을 인식에 이용하고 연속음성인식으로의 확장이 용이한 우수한 인식 모델이다. 그러나, 예측신경회로망 모델은 음운학적으로 유사한 음성구간에서의 변별력이 낮다는 문제점이 있다. 그것은 기존의 학습 알고리즘이 다른 어휘와의 거리는 고려하지 않고 대상어휘의 예측오차만 최소화시키기 때문이다. 따라서, 본 논문에서는 직접 인식오차를 최소화시키는 GPD알고리즘에 의해 유사어휘간의 거리를 고려하는 변별력있는 학습 알고리즘을 제안한다.

  • PDF

면역알고리즘을 이용한 오델로 게임전략 탐색 (The search of the Othello game strategies using the immune algorithm)

  • 이근혜;강태원
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2004년도 봄 학술발표논문집 Vol.31 No.1 (B)
    • /
    • pp.598-600
    • /
    • 2004
  • 기존의 연구 논문 중 비결정론적인 알고리즘인 유전자 알고리즘이나 인공신경망 등을 오델로 게임에 적용하여 자동학습을 시킨 예는 많으나 면역알고리즘을 모델로 게임에 적용한 예는 찾기가 어렵다 본 논문에서는 생리학의 면역시스템의 특징을 그대로 적용한 면역알고리즘을 모델로 게임에 적용하여 게임전략 생성에 관하여 연구한다. 생리학의 면역시스템은 자기조절능력이 있다는 외과 재 감염시 빠르게 대응할 수 있다는 특징이 있다. 면역알고리즘을 이용하여 탐색된 전략을 유전자알고리즘 그리고 기존에 연구되어진 게임전략 등과 실험하여 그 결과를 비교.연구한 결과 면역알고리즘을 적용하여 탐색된 모델로 게임전략이 가장 높은 승률을 보인다.

  • PDF

GA-Hard 문제를 풀기 위한 공진화 모델 (Co-Evolutionary Model for Solving the GA-Hard Problem)

  • 박창현;이동욱;심귀보
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2005년도 춘계학술대회 학술발표 논문집 제15권 제1호
    • /
    • pp.313-316
    • /
    • 2005
  • 공진화 알고리즘은 두 개 이상의 개체군이 상호작용하며 진화하는 알고리즘이다. 기존의 진화 알고리즘이 하나의 개체군으로 구성된 정적인 적합도 지형에서 해를 찾는 방식임에 반해 공진화 알고리즘은 두개 이상의 개체군이 동적인 적합도 지형을 제공하여 더 강건하고 빠른 수렴성을 보인다. 본 논문에서는 GA가 풀기 어려운 GA-hard problem을 풀기 위하여 저자가 제안한 3가지 공진화 모델을 설명한다. 첫번째 모델은 찾고 자하는 해와 환경을 각각 경쟁하는 개체군으로 구성해 진화하는 방법으로 사용자의 환경설정에 의해 지역적 해를 찾는 것을 방지하는 경쟁적 공진화 알고리즘이다. 두 번째 모델은 찾고자하는 해와 이를 보조하는 스키마를 각각 개체군으로 구성해 진화하는 스키마 공진화 알고리즘이다. 세 번째 알고리즘은 해를 구성하는 부분을 두 개의 개체군으로 나누고 두 개체군이 서로 게임을 통해 진화하도록 하는 게임이론에 기반한 공진화 알고리즘이다.

  • PDF

유전자알고리즘 및 발견적방법을 이용한 통합차량운송계획 모델 (Integrated Heuristic Model for Vehicle Routing Problem Based on Genetic Algorithm)

  • 황흥석
    • 한국시뮬레이션학회:학술대회논문집
    • /
    • 한국시뮬레이션학회 1999년도 추계학술대회 논문집
    • /
    • pp.114-120
    • /
    • 1999
  • 본 연구는 Heuristic 알고리즘 및 유전자알고리즘(GA)을 이용하여 3단계의 통합차량운송계획 모델의 개발이다. 차량경로문제(VRP : Vehicle Routing Problem)를 해결하기 위한 접근방법으로 기존의 Saving 알고리즘을 개선하여 사용하였으며 유전자 알고리즘(Genetic Algorithm)의 각종 연산자 (Operators)들을 계산하여 사용하였다. 본 모델은 다음 3단계의 접근방법을 사용하였다 ; 1) 다 물류 센터의 문제해결을 위한 영역활당(Sector Clustering) 모델, 2) 경로계획모델(VRP Model), 및 3) 최적 운송계획모델(GA-TSP Model). 본 모델들을 다양한 운송환경에서, 거리산정방법, 가용운송장비 대수, 운송시간의 제한, 물류센터 및 운송지점의 위치 및 수요량 등 다양한 파라메터들을 고려한 통합시스템으로 3개의 Component로 구성된 GUI-Type 프로그램을 개발하고 Sample 응용결과를 보였으며 기존의 모델들 보다 우수한 결과를 보였다.

  • PDF

스크래치를 이용한 교사교육이 과학교사의 모델에 대한 이해에 미치는 영향 (The Effect of Teacher Education Using Scratch on Understanding of Science Model)

  • 백성혜;김성기;최희
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2017년도 제56차 하계학술대회논문집 25권2호
    • /
    • pp.380-383
    • /
    • 2017
  • 과학에서 사용하는 모델은 자연 그 자체가 아니면 자연을 단순화하여 표현한 표상이다. 그렇기 때문에 각 모델은 자연을 표상하기 위한 특정한 알고리즘을 갖는다. 그러므로 과학 모델에 대한 이해는 자연을 표상하기 위한 특정한 알고리즘이 무엇인지에 대한 이해가 필수적이다. 이러한 특정한 알고리즘에 대한 이해와 이를 바탕으로 한 다른 현상의 예측과 설명을 위한 도구로 본 논문은 스크래치를 활용하였다. 또한 과학의 모델에 대한 이해의 소재로 대학생뿐만 아니라 많은 과학교사 조차도 대안개념에 머물러 있는 뜨거나 가라앉는 현상을 선정하였다. 연구대상은 K대학원 교육대학원 멀티미디어와 과학교육을 수강한 17명의 과학교사이며, 스크래치를 통해 기본 알고리즘 3시간, 응용 알고리즘 3시간을 투입하였다. 모델에 대한 이해를 위해 뜨거나 가라 앉는 현상에 때한 LP설문지를 사전, 사후검사에 실시하였다. 1차적으로 양적변화를 통해 이 현상에 대한 개념의 수준의 변화를 알아보았으며, 2차적으로 인터뷰와 자기보고식 설문지를 이용하여 모델에 대한 이해를 질적으로 분석하였다. 연구결과 과학교사들은 현상에 대한 개념에 대한 수준이 상승하였으며, 질적자료 분석 결과, 모델에 대한 깊은 이해(depth)와 전이능력(transfer)이 증가하였다. 이는 스크래치를 통해 과학 모델의 이해를 높일 수 있음을 시사한다.

  • PDF