• Title/Summary/Keyword: 안정균열성장

Search Result 42, Processing Time 0.03 seconds

Effects of Crack Velocity on Fracture Resistance of Concrete (콘크리트의 파괴저항에 대한 균열속도의 영향)

  • Yon, Jung-Heum
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.1
    • /
    • pp.52-59
    • /
    • 2003
  • Tests of concrete CLWL-DCB specimens had been conducted with displacement-controlled dynamic loading. The crack velocities for 381mm crack extension were 0.80 mm/sec ~ 215m/sec. The external work and the kinetic and strain energies were derived from the measured external load and load-point displacement. The fracture resistance of a running crack was calculated from the fitted curves of the fracture energy required for the tests. The standard error of the fracture energy was less than 3.2%. The increasing rate of the fracture resistance for 28 mm initial crack extension or micro-cracking was relatively small, and then the slope of the fracture resistance increased to the maximum value at 90∼145 mm crack extension depending on crack velocity. The maximum fracture resistance remained for 185 mm crack extension, and then the faster crack velocity showed the faster decreasing rate of the maximum fracture resistance. The maximum fracture resistance increased proportionally to the logarithm of the crack velocity from 142 N/m to 217 N/m when the crack velocity was faster than 0.273 m/sec. The maximum fracture resistance of the fastest tests was similar to the average fracture energy density of 215 N/m. To measure the fracture resistance of concrete, the stable crack extension should be larger than 90∼145 mm depending on crack velocity.

3D Analysis of Crack Growth in Metal Using Tension Tests and XFEM (인장 실험과 XFEM을 이용한 금속 균열 성장의 3 차원적 분석)

  • Lee, Sunghyun;Jeon, Insu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.4
    • /
    • pp.409-417
    • /
    • 2014
  • To prevent the occurrence of fractures in metal structures, it is very important to evaluate the 3D crack growth process in those structures and any related parts. In this study, tension tests and two simulations, namely, Simulation-I and Simulation-II, were performed using XFEM to evaluate crack growth in three dimensions. In the tension test, Mode I crack growth was observed for a notched metal specimen. In Simulation-I, a 3D reconstructed model of the specimen was created using CT images of the specimen. Using this model, an FE model was constructed, and crack growth was simulated using XFEM. In Simulation-II, an ideal notch FE model of the same geometric size as the actual specimen was created and then used for simulation. Obtained crack growth simulation results were then compared. Crack growth in the metal specimen was evaluated in three dimensions. It was shown that modeling the real shape of a structure with a crack may be essential for accurately evaluating 3D crack growth.

Traring instability of crack based on J-integral (J-적분을 이용한 균열 찢어짐 불안정성에 관한 연구)

  • Lee, Hong-Seo;Kim, Hui-Song
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.6 no.3
    • /
    • pp.78-89
    • /
    • 1989
  • Applicability of tearing modulus based on J-integral proposed by Paris et al is investigated using compact tension specimens of strutural alloy steel (SCM4). Both general fracture test and instability fracture test are performed. The applied tearing modulus, ( $T_{j}$)app estimated from the real load vs. crack growth curve measured from experiments are compared with that estimated from the limit load vs. crack growth curve. The results are : (1) the $T_{j}$parameter could be applied to predict crack growth instability : (2) The use of ( $T_{j}$)app estimated from the load vs. crack growth curve, proposed in this study could be well predicted crack growth instability instead of that estimated form the limit load vs. crack growth curve.e.

  • PDF

Development of Fracture Toughness Evaluation Method for Composite Materials by Non-Destructive Testing Method (비파괴검사법을 이용한 복합재료의 파괴인성 평가법 개발)

  • Lee, Y.T.;Kim, K.S.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.18 no.4
    • /
    • pp.278-291
    • /
    • 1998
  • Fracture process of continuous fiber reinforced composites is very complex because various fracture mechanisms such as matrix cracking, debonding, delamination and fiber breaking occur simultaneously during crack growth. If fibers cause crack bridging during crack growth, the stable crack growth and unstable crack growth appear repeatedly. Therefore, it is very difficult to exactly determine tile starting point of crack growth and the fracture toughness at the critical crack length in composites. In this research, fracture toughness test for CFRP was accomplished by using acoustic emission(AE) and recording of tile fracture process in real time by video-microscope. The starting point of crack growth, pop-in point and the point of unstable crack growth can be exactly determined. Each fracture mechanism can be classified by analyzing the fracture process through AE and video-microscope. The more reliable method ior the fracture toughness measurement of composite materials was proposed by using the combination of R-curve method, AE and video microscope.

  • PDF

Estimation of the Characteristics of Delayed Failure and Long-term Strength of Granite by Brazilian Disc Test (압열인장시험을 이용한 화강암의 지연파괴특성 및 장기안정성 평가)

  • Jung, Yong-Bok;Cheon, Dae-Sung;Park, Eui-Seob;Park, Chan;Lee, Yun-Su;Park, Chul-Whan;Choi, Byung-Hee
    • Tunnel and Underground Space
    • /
    • v.24 no.1
    • /
    • pp.67-80
    • /
    • 2014
  • Long-term stability and delayed failure of granite were evaluated through the laboratory test based on Wilkins method and Brazilian disc test (BDT) which yields tensile strength, mode I fracture toughness and subcritical crack growth parameters. Then, the long-term strength of granite was estimated by using analytical models and long-term stability of compressed air-energy storage (CAES) pilot cavern pressurized up to 5 ~ 6 MPa was evaluated using numerical code, FRACOD with the determined subcritical crack growth parameters. The results of test and analyses showed that the subcritical crack growth index, n was determined as 29.39 and the inner pressure of 5 ~ 6 MPa had an insignificant effect on the long-term stability of pilot cavern. It was also found that the measurement and analysis of acoustic emission events can describe the accumulation of damage due to subcritical crack growth quantitatively. That is, AE monitoring can provide the current status of rock under loading if we make an identical installation condition in the field with that of the laboratory test.

The Integrity Assessment Method of Initailly Cracked Structural Components by Reliability Analysis (신뢰성해석에 의한 초기균열을 갖는 구조부재의 건전성 평가방법)

  • S.J. Yim;T.U. Byun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.30 no.2
    • /
    • pp.161-176
    • /
    • 1993
  • For the purpose of assessing structural integrity at a level of complexity and accuracy appropriate for the situation, integrity assessment methods are formulated with the following methods. One is three-tier assessment method of the revised BSI PD 6493 which considers stable crack growth effect, the others are limit load analysis which estimates the plastic collapse load and stability assessment method which considers stable crack growth of ductile material exactly using J-integral and tearing modulus. Besides, integrity assessments for center cracked panel(CCP) specimen and the circumferential through-cracked pipe are carried out and reliability analysis is accomplished by the first order reliability method which is one of the conventional reliability methods. Also the accuracy of the present method is verified by Monte Carlo method.

  • PDF

Acoustic Emission during Crack Propagation Process of Rubber-Modified Epoxy Resin (고무변성 에폭시 수지의 균열진전과정과 음향방출 특성)

  • 이덕보;김현수;최낙삼;남기우;문창권
    • Composites Research
    • /
    • v.16 no.4
    • /
    • pp.44-50
    • /
    • 2003
  • The damage zone around a crack tip occurring before the fracture is a significant domain. which affects the toughening mechanism of materials. In this study. the growth process of damage zone in the vicinity of crack tip for rubber-modified epoxy resin is investigated using an acoustic emission(AE) analysis. The weight fractions of rubber(CTBN 1300$\times$B) in rubber-modified epoxy resin are 5 wt% and 15 wt%. The fracture toughness($K_{IC}$) and the fracture energy($G_{IC}$) were measured using 3 point bending single-edge notched specimens. The damage zone and rubber particles distributed around the crack tip were observed by a polarized optical microscope and an atomic force microscope(AFM). The damage zone around crack tip of rubber-modified epoxy resin was formed at 13 % loading and developed until 57 % loading of the fracture load. The crack initiated at 57 % loading grew repeatedly in the stick-slip propagation behavior. Based on time-frequency analysis, it was confirmed that AE signals with frequency bands of 0.15~0.20 MHz and 0.20~0.30 MHz were generated from cavitation and stable/unstable cracking inside the damage zone.

Analysis of Static Crack Growth in Asphalt Concrete using the Extended Finite Element Method (확장유한요소법을 이용한 아스팔트의 정적균열 성장 분석)

  • Zi, Goangseup;Yu, Sungmun;Thanh, Chau-Dinh;Mun, Sungho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.4D
    • /
    • pp.387-393
    • /
    • 2010
  • This paper studies static crack growth of asphalt pavement using the extended finite element method (XFEM). To consider nonlinear characteristics of asphalt concrete, a viscoelastic constitutive equation using the Maxwell chain is used. And a linear cohesive crack model is used to regularize the crack. Instead of constructing the viscoelastic constitutive law from the Prony approximation of compliance and retardation time measured experimentally, we use a smooth log-power function which optimally fits experimental data and is infinitely differentiable. The partial moduli of the Maxwell chain from the log-power function make analysis easy because they change more smoothly in a more stable way than the ordinary method such as the least square method. Using the developed method, we can simulates the static crack growth test results satisfactorily.

The Fatigue Life Prediction of Defect in Pipeline Weldment (배관 용접부에 존재하는 결함의 피로수명 평가)

  • 김영표;김우식
    • Journal of Welding and Joining
    • /
    • v.19 no.5
    • /
    • pp.460-465
    • /
    • 2001
  • 본고에서 피로균열성장에 대한 일반사항과 배관용접부 결함의 피로수명평가 방안에 대해서 알아보았다. 고압의 가연성 가스나 액체를 수송하는 배관이 피로에 의해 파괴되는 경우에는 엄청난 재산과 인적 손실을 발생시킬 수 있다. 따라서 배관운용회사들은 배관의 안정적인 운용을 위하여 다양한 환경에 노출되어있는 배관의 피로특성을 정확히 평가해야 한다.

  • PDF

Characteristics of Natural and Experimental Fracture Propagation in Rocks (암석 내의 자연균열과 인공균열의 진행특성)

  • 백환조
    • The Journal of Engineering Geology
    • /
    • v.7 no.1
    • /
    • pp.53-62
    • /
    • 1997
  • Fracture mechanics properties of rock materials can he applied to predict the distribution of natural fractures in rock masses, and also to assess the safety of rock slopes and underground structures. In this study, rock fracture toughness and other fracture rrechanics properties of sorne lithologies showing apparently rock-property-controlled distribution of natural fractures were measured. Propagation behaviors of natural and experirnental fractures were also characterized both qualitatively and quantitatively, in terns of the propagation types and sorne statistical parameters. It was concluded that the application of fracture mechanics theories to the ge6logic materials should be based on the geological background and evidences.

  • PDF