• Title/Summary/Keyword: 안정경계

Search Result 614, Processing Time 0.029 seconds

Effect of Channel Length and Drain Bias on Threshold Voltage of Field Enhanced Solid Phase Crystallization Polycrystalline Thin Film Transistor on the Glass Substrate (자계 유도 고상결정화를 이용한 다결정 실리콘 박막 트랜지스터의 채널 길이와 드레인 전압에 따른 문턱 전압 변화)

  • Kang, Dong-Won;Lee, Won-Kyu;Han, Sang-Myeon;Park, Sang-Geun;Han, Min-Koo
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1263-1264
    • /
    • 2007
  • 자계 유도 고상결정화(FESPC)를 이용하여 제작한 다결정실리콘(poly-Si) 박막 트랜지스터(TFT)는 비정질 실리콘 박막 트랜지스터(a-Si:H TFT)보다 뛰어난 전기적 특성과 우수한 안정성을 지닌다. $V_{DS}$ = -0.1 V에서 채널 폭과 길이가 각각 $5\;{\mu}m$, $7\;{\mu}m$인 P형 TFT의 이동도(${\mu}$)와 문턱 전압($V_{TH}$)은 각각 $31.98\;cm^2$/Vs, -6.14 V 이다. FESPC TFT는 일반 poly-Si TFT에 비해 채널 내 결정 경계 숫자가 많아서 상대적으로 열악한 특성을 가진다. 채널 길이 $5\;{\mu}m$인 TFT의 $V_{TH}$는 채널 길이 $18\;{\mu}m$ 소자의 $V_{TH}$보다 1.36V 작지만, 일반적으로 큰 값이다. 이 현상은 채널에 다수의 결정 경계가 존재하고, 수평 전계가 크기 때문이다. 수평 전계가 증가하면, 결정 경계의 전위 장벽 높이가 감소하게 되는데, 이는 DIGBL 효과이다. ${\mu}$의 증가에 따라서, 드레인 전류가 증가하고 $V_{TH}$은 감소한다. 활성화 에너지($E_a$)는 드레인 전압과 결정 경계의 수에 따라 변하는데, 드레인 전압이 크거나 결정 경계의 수가 감소하면 $E_a$는 감소한다. $E_a$가 감소하면 $V_{TH}$가 감소한다. 유리기판 위의 FESPC를 이용한 P형 poly-Si TFT의 $V_{TH}$는 채널의 길이와 $V_{DS}$에 영향을 받는다. 증가한 수평 전계가 결정 경계에서 에너지 장벽을 낮추는 효과를 일으키기 때문이다.

  • PDF

Uncertain Region Based User-Assisted Segmentation Technique for Object-Based Video Editing System (객체기반 비디오 편집 시스템을 위한 불확실 영역기반 사용자 지원 비디오 객체 분할 기법)

  • Yu Hong-Yeon;Hong Sung-Hoon
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.5
    • /
    • pp.529-541
    • /
    • 2006
  • In this paper, we propose a semi-automatic segmentation method which can be used to generate video object plane (VOP) for object based coding scheme and multimedia authoring environment. Semi-automatic segmentation can be considered as a user-assisted segmentation technique. A user can initially mark objects of interest around the object boundaries and then the selected objects are continuously separated from the un selected areas through time evolution in the image sequences. The proposed segmentation method consists of two processing steps: partially manual intra-frame segmentation and fully automatic inter-frame segmentation. The intra-frame segmentation incorporates user-assistance to define the meaningful complete visual object of interest to be segmentation and decides precise object boundary. The inter-frame segmentation involves boundary and region tracking to obtain temporal coherence of moving object based on the object boundary information of previous frame. The proposed method shows stable and efficient results that could be suitable for many digital video applications such as multimedia contents authoring, content based coding and indexing. Based on this result, we have developed objects based video editing system with several convenient editing functions.

  • PDF

Investigation on Boundary Conditions of Fractional-Step Methods: Compatibility, Stability and Accuracy (분할단계법의 경계조건에 관한 연구: 적합성, 안정성 및 정확도)

  • Kim, Young-Bae;Lee, Moon-J.;Oh, Byung-Do
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.410-415
    • /
    • 2001
  • An analytical and numerical examination of second-order fractional-step methods and boundary condition for the incompressible Navier-Stokes equations is presented. In this study, the compatibility condition for pressure Poisson equation and its boundary conditions, stability, and numerical accuracy of canonical fractional-step methods has been investigated. It has been found that satisfaction of compatibility condition depends on tentative velocity and pressure boundary condition, and that the compatible boundary conditions for type D method and approximately compatible boundary conditions for type P method are proper for divergence-free velocity for type D and approximately divergence-free for type P method. Instability of canonical fractional-step methods is induced by approximation of implicit viscous term with explicit terms, and the stability criteria have been founded with simple model problems and numerical experiments of cavity flow and Taylor vortex flow. The numerical accuracy of canonical fractional-step methods with its consistent boundary conditions shows second-order accuracy except $D_{MM}$ condition, which make approximately first-order accuracy due to weak coupling of boundary conditions.

  • PDF

Investigation of wake characteristics in turbulence of stable atmospheric boundary layer (안정경계층 난류에서의 터빈 후류 특성 연구)

  • Na, Jisung;Ko, Seungchul;Lee, Joon Sang
    • Journal of the Korean Society of Visualization
    • /
    • v.14 no.3
    • /
    • pp.28-31
    • /
    • 2016
  • In this study, we investigate the wake characteristics in two cases which are laminar inflow and turbulent inflow. To solve the flow with wind turbines and its wake, we use large eddy simulation (LES) technique with actuator line method (ALM) and turbulent inflow of Turbsim. Turbulent inflow which contains the characteristic of the stable atmospheric boundary layer is used. We perform the quantitative analysis of velocity deficit and turbulence intensity in two cases. Time series of velocity deficit at the first, the second column in two cases are compared to observe the performance of wind turbine. The performance in the first column in laminar inflow is overestimated compared to that in turbulent inflow. And we observe that wake in the case with turbulent inflow drive to the span-wise direction and wake recovery in turbulent inflow is more effective. In quadrant analysis of Reynolds stress, the ejection and the sweep motion in turbulent inflow case are bigger than those in laminar inflow case.

Steady Aerodynamic Characteristics of FAST Flying over Nonplanar Ground Surface (비평면 지면을 비행하는 FAST의 정상상태 공력특성)

  • Cho, Yeon-Woo;Cho, Jeong-Hyun;Cho, Jin-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.6
    • /
    • pp.483-488
    • /
    • 2007
  • The aerodynamic characteristics of FAST(Future Air Speed Transit) combined the body with tandem wing flying over nonplanar ground surface are investigated by using a boundary element method. To validate the present method, results of the present analysis are compared with the experiment and other numerical results. The arrangement of the tandem wing is determined to secure sufficient aero-levitation force and the stability through the analysis of the aerodynamic characteristics of the FAST. The FAST has the maximum lift characteristics when the tandem wing with lower endplate is located at the front side and the rear side of the body. The stability of the FAST can be secured by using the flaperon of the tandem wing.

Elastic Stability of Perforated Concrete Shear Wall (개구부를 갖는 콘크리트 전단벽의 탄성안정)

  • 김준희;김순철
    • Computational Structural Engineering
    • /
    • v.11 no.1
    • /
    • pp.251-259
    • /
    • 1998
  • Concrete shear wall with opening is modeled as a rectangular thin plate. The stability analysis results are presented by the buckling coefficient, k, for two different boundary conditions. The other parameters whose variation have been considered are the ratio of the bending induced force to gravity force, a, the ratio of the horizontal shear force to the gravity force ratio, A and the change of location and the size of perforated part. To obtain the results by finite element method, an example plate has been divided into 27*9 square elements. Four node rectangular c.deg. continuous finite elements having three degrees of freedom per each node is adopted. It is generally concluded that the buckling coefficients decrease as the size of hole increases, and the location of hole moves to free edge of the wall.

  • PDF

Analysis of Slope Stability by Applying the Convergence of the Interstice Forces (분할편 경계내각 수렴에 의한 사면안정 해석)

  • 김팔규;김규문
    • Geotechnical Engineering
    • /
    • v.3 no.4
    • /
    • pp.21-30
    • /
    • 1987
  • The purpose of this paper is to develop a method of slope stability analysis, using slice method The direction of interstice forces was assumed in two ways: 1) inclined interslice force parallel to the base of slice, 2) normal interslice force normal to the boundary surface of slice being used in the existing slice method. The deviation from the value of interstice force caused by assumption was removed in the Processing of analysis, and the factor of safety was obtained more accurately by deciding the location of interstice force acting on each slice. More rational validity of the method with inclined interslice force was proved by performing slope stability analyses with both methods. The factor of safety obtained by the proposed method was compared with that by the existing methods, and the influence of seismic coefficient was also analyzed.

  • PDF

Stability of the K rm n Boundary Layer Flow (Karman 경계층 유동의 안정성에 관한 연구)

  • 황영규;이윤용
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.8
    • /
    • pp.771-781
    • /
    • 2000
  • The Karman boundary-layer, has been numerically investigated for the disturbance wave number, wave velocity, azimuth angle and radius (Reynolds number, Re). The disturbed flow over rotating disk can lead to transition at a much lower Re than that of the well-known Type 1 mode of instability. This early transition is due to the excitation of the Type II mode. Presented are the neutral stability results concerning these modes by solving new formulated vorticity equations with consideration of whole convective terms. When the present numerical results are compared with the previously known results, the value of critical Re corresponding to Type I is moved from Rec,! =285.3 to 270.2 and the value corresponding to Type II is from $Re_{c,2}$=69.4 to 36.9, respectively. Also, the corresponding wave number is moved from $k_1$ =0.378 to $k_1$ =0.389 for Type I; from $k_2$ =0.279 to $k_2$=0.385 for Type II. For Type II, the upper limit of wave number and azimuth angle is $k_U$=0.5872,$varepsilon_U=-18^{\circ}$ , while its lower limit is$k_L$ =0.05, $varepsilon_L=-27^{\circ}$ This implies that the disturbances will be relatively fast amplified at small Re and within narrow bands of wave number compared with the previous results.

  • PDF

Fast and Accurate Handling of Solid Collisions with Boundary Problem of Air Meshes (공기 메쉬의 경계 문제를 이용한 고체 충돌의 빠르고 정확한 처리)

  • Moon, Seong-Hyeok;Kim, Jong-Hyun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.569-572
    • /
    • 2022
  • 본 논문에서는 공기 메쉬(Air meshes)를 이용하여 고체의 충돌을 효율적으로 처리할 수 있는 새로운 방법을 제시한다. 기존의 프리미티브 단위의 충돌 처리는 시뮬레이션의 안정성을 높이기 위해 시간 간격(Time-step), 3차 방정식과 같은 큰 계산 과정을 필요로 했으며, 장면 복잡도에 따라 DCD(Discrete collision detection)뿐만 아니라 CCD(Continuous collision detection)까지 고려해야 되는 상황이 빈번히 발생한다. 본 논문에서는 이전에 제안된 공기 메쉬 기법을 통해 충돌처리를 효율적으로 개선시킬 수 있는 방법에 대해서 제안한다. 원본 공기 메쉬 접근법은 시뮬레이션 메쉬가 아닌, 주변 공기를 메쉬화시키고 이들의 변형을 부피로 근사하여 충돌 여부 및 처리를 인지하고 예측했다. 공기 메쉬를 정제하는 과정에서 수치적인 수렴을 위해 정삼각형을 유지하려는 제약사항을 두었다. 하지만, 이러한 방법은 장면에 따라 노이즈한 결과를 나타내며, 헤어나 털 시뮬레이션과 같은 라인 형태인 시뮬레이션에서는 경계 문제가 더욱더 민감하게 나타났다. 본 논문에서는 공기 메쉬를 정제하는 과정에서 새로운 제약 조건을 추가하여 노이즈가 완화된 충돌처리 결과를 보여준다. 우리의 헤어뿐만 아니라 대부분의 장면에서 안정적인 결과를 보여준다.

  • PDF

Combustion Stability Rating Test under Low Pressure Condition of a 75-$ton_f$ LRE Thrust Chamber (75톤급 액체로켓엔진 연소기의 저압 조건에서 수행된 연소안정성 시험)

  • Lee, Kwang-Jin;Kang, Dong-Hyuk;Lim, Mun-Ki;Ahn, Kyu-Bok;Han, Yeoung-Min;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.231-238
    • /
    • 2010
  • Combustion stability rating tests under condition low pressure of a 75-$ton_f$ liquid rocket engine(LRE) thrust chamber were carried out. Mixing head with decreased number of injectors than that of the other but with the same mass flow rate to the combustion chamber showed self-oscillation instability in chamber pressure of 30 bar. The other combustion chamber with increased number of injectors showed that high frequency combustion stability was maintained under condition of same pressure, but self-oscillation instability was generated in chamber pressure of 20 bar which can be considered as stability boundary region of this mixing head.

  • PDF