• Title/Summary/Keyword: 안전 압력

Search Result 940, Processing Time 0.028 seconds

An Experimental Study on Flow Distributor Performance with Single-Train Passive Safety System of SMART-ITL (SMART-ITL 1 계열 피동안전계통을 이용한 유동분사기 성능에 대한 실험연구)

  • Ryu, Sung Uk;Bae, Hwang;Yang, Jin Hwa;Jeon, Byong Guk;Yun, Eun Koo;Kim, Jaemin;Bang, Yoon Gon;Kim, Myung Joon;Yi, Sung-Jae;Park, Hyun-Sik
    • Journal of Energy Engineering
    • /
    • v.25 no.4
    • /
    • pp.124-132
    • /
    • 2016
  • In order to estimate the effect of flow distributors connected to an upper nozzle of CMT(Core Makeup Tank) on the thermal-hydraulic characteristics in the tank, a simplified 2 inch Small Break Loss of Coolant Accident(SBLOCA) was simulated by skipping the decay power and Passive Residual Heat Removal System(PRHRS) actuation. The CMT is a part of safety injection systems in the SMART (System Integrated Modular Advanced Reactor). Each test was performed with reliable boundary conditions. It means that the pressure distribution is provided with repeatable and reproducible behavior during SBLOCA simulations. The maximum flow rates were achieved at around 350 seconds after the initial opening of the isolation valve installed in CMT. After a short period of decreased flow rate, it attained a steady injection flow rate after about 1,250 seconds. This unstable injection period of the CMT coolant is due to the condensation of steam injected into the upper part of CMT. The steady injection flow rate was about 8.4% higher with B-type distributor than that with A-type distributor. The gravity injection during hot condition tests were in good agreement with that during cold condition tests except for the early stages.

FE Analysis on the Screwed Safety of a Valve for a LPG Bombe (LPG 용기용 밸브의 체결안전성에 관한 유한요소해석)

  • Kim, Chung-Kyun;Oh, Kyong-Seok
    • Journal of the Korean Institute of Gas
    • /
    • v.11 no.4
    • /
    • pp.79-84
    • /
    • 2007
  • In this paper, the finite element analysis of a valve screw for a LPG cylinder has been presented on the leakage safety and strength one, which are computed and investigated by a contact normal stress and von Mises stress between a female screw of a valve and a male screw of a neck ring in a LPG bombe. The LP gas charging pressure of a LPG bombe is $8{\sim}9kg/cm^2$, which is pressurized to the screw sealing contact areas between a valve and a LP gas cylinder. The peak failures of the screw tooth height due to a scratch wear and chipping loss of the contact area may decrease screw tooth strength and increase a leakage of a LP gas. These are strongly affect to the contact normal and von Mises stresses of the valve screws. The FEM computed results show that the tooth height loss due to a wear and chipping failure of the screw peak does not affect to the LP gas leak and strength of a valve screw theoretically. But if the tooth wear of the screw height of a brass valve overpasses the critical strength safety of the valve, the valve screw may be failed in fastening the valve and a LP gas bombe suddenly.

  • PDF

Risk Assessment and Safety Measures for Methanol Separation Process in BPA Plant (BPA 공장의 메탄올 분리공정에서 위험성 평가 및 안전대책)

  • Woo, In-Sung;Lee, Joong-Hee;Lee, In-Bok;Chon, Young-Woo;Park, Hee-Chul;Hwang, Seong-Min;Kim, Tae-Ok
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.3
    • /
    • pp.22-28
    • /
    • 2012
  • For a methanol separation column of the BPA (Bisphenol A) plant, HAZOP (hazard and operability) assessment was performed and damage ranges were predicted from the accident scenarios for the fire and the explosion. As a result, the damage range of the jet fire was 20 m in the case of rupture of the discharge pipe (50 mm diameter) of safety valve, and that of the flash fire was 267 m in the case of catastrophic rupture. Also, the damage ranges of the unconfined vapor cloud explosion (UVCE) for the rupture of the discharge pipe and for the catastrophic rupture were 22 m and 542 m, respectively. For the worst case of release scenarios, safety measures were suggested as follows: the pressure instruments, which can detect abnormal rise of the internal pressure in the methanol separation column, should be installed by the 2 out of 3 voting method in the top section of the column. Through the detection, the instruments should simultaneously shut down the control and the emergency shut-off valves.

A basic study on the hazard of hydrogen feul cell vehicles in road tunnels (도로터널에서 수소차 위험에 관한 기초적 연구)

  • Ryu, Ji-Oh;Lee, Hu-Young
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.1
    • /
    • pp.47-60
    • /
    • 2021
  • Hydrogen is a next-generation energy source, and according to the roadmap for activating the hydrogen economy, it is expected that industries to stably produce, store, and transport of hydrogen as well as the supply of hydrogen fuel cell vehicles will be made rapidly. Accordingly, safety measures for accidents of hydrogen vehicles in confined spaces such as tunnels are required. In this study, as part of a study to ensure the safety of hydrogen fuel cell vehicles in road tunnels, a basic investigation and research on the risk of fire and explosion due to gas leakage and hydrogen tank rupture among various hazards caused by hydrogen fuel cell vehicle accidents in tunnels was conducted. The following results were obtained. In the event of hydrogen fuel cell vehicle accidents, the gas release rate depends on the orifice diameter of TPRD, and when the gas is ignited, the maximum heat release rate reaches 3.22~51.36 MW (orifice diameter: 1~4 mm) depending on the orifice diameter but the duration times are short. Therefore, it was analyzed that there was little increase in risk due to fire. As the overpressure of the gas explosion was calculated by the equivalent TNT method, in the case of yield of VCE of 0.2 is applied, the safety threshold distance is analyzed to be about 35 m, and number of the equivalent fatalities are conservatively predicted to reach tens of people.

Role of the Inferior Thyroid Vein after Left Brachiocephalic Vein Division During Aortic Surgery

  • Park, Hyung-Ho;Kim, Bo-Young;Oh, Bong-Suk;Yang, Ki-Wan;Seo, Hong-Joo;Lim, Young-Hyuk;Kim, Jeong-Jung
    • Journal of Chest Surgery
    • /
    • v.35 no.7
    • /
    • pp.530-534
    • /
    • 2002
  • Background: In aortic surgery, division and ligation of the left brachiocephalic vein(LBV) may improve exposure of the aortic arch but controversy continues about the safety of this division and whether a divided vein should be reanastomosed after arch replacement was completed. The safety of LBV division and the fate of the left subclavian venous drainage after LBV division were studied. Material and Method: From November 1998 to January 2001, planned division and ligation of the LBV on the mid-line after median sternotomy was peformed in 10 patients during the aortic surgery with the consideration of local anatomy and distal aortic anastomosis. Assessment for upper extremity edema and neurologic symptoms, measurement of venous pressure in the right atrium and left internal jugular vein, and digital subtraction venography(DSV) of the left arm were made postoperatively. Result: In 10 patients there was improvement in access to the aortic arch for procedures on the ascending aorta or aortic arch. The mean age of patients was 62 years(range 24 to 70). Follow-up ranged from 3 weeks to 13 months. One patient died because of mediastinitis from methicilline-resistant staphylococcus aureus strain. All patients had edema on the left upper extremity, but resolved by the postoperative day 4. No patient had any residual edema or difficulty in using the left upper extremity during the entire follow-up period. No patient had postoperative stroke. Pressure difference between the right atrium and left internal jugular vein was peaked on the immediate postoperative period(mean peak pressure difference = 25mmHg), but gradually decreased, then plated by the postoperative day 4. In all DSV studies left subclavian vein flowed across the midline through the inferior thyroid venous plexus. Conclusion: We conclude that division of LBV is safe and reanastomosis is not necessary if inferior thyroid vein, which is developed as a main bridge connecting the left subclavian vein with right venous system, is preserved.

Network Design for Effective In-Ship Communication Network Construction (선박 내 무선 센서 네트워크에서 에너지 효율을 위한 클러스터링 및 라우팅 프로토콜의 구성)

  • Kim, Mi-Jin;Jang, Jong-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.353-357
    • /
    • 2012
  • 요즘 모든 분야에서 실세계의 상황정보 인지를 통해 전자공간과 물리공간을 결합할 수 있는 유비쿼터스 컴퓨팅의 기반 기술을 사용하여 센서와 무선 통신 기술을 결합한 무선 센서 네트워크에 대한 연구가 활발히 이루어지고 있는 추세이다. 또한 선박에서도 유무선 기술을 융합하여 지능형 선박에 적합한 Ship Area Network(SAN) 연구가 진행되고 있으나, 다양한 유무선 네트워크 연동 SAN-브릿지 기술, 이종 센서, 제어기기를 자율적으로 구성관리하거나 상호연동, 원격제어 하는 자율 SAN 구성관리 기술 등의 필요성이 제기되고 있는 실정이다. 선박에서의 모니터링 분야인 구조적 안전과 화물 관리를 위한 모니터링 외에도 선원을 포함한 모든 주변 환경을 안전하게 유지하는 것이다. 이에 본 논문에서는 기후 변화에 대한 감지나 여러 구조물에 대한 온도, 압력 등의 모니터링 시스템을 효율적으로 설계하기 위해 무선 센서 네트워크에서의 에너지 효율을 이용한 라우팅 및 데이터 병합을 위한 기술 동향을 파악하고 자기 구성 클러스터링 방법을 분석하여 선내의 무선 센서 네트워크 구성에 대해 연구하였다.

  • PDF

Burst Test and Finite Element Analysis for Failure Pressure Evaluation of Nuclear Power Plant Pipes (원전 배관 손상압력 평가를 위한 파열시험 및 유한요소해석)

  • Yoon, Min Soo;Kim, Sung Hwan;Kim, Taesoon
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.1
    • /
    • pp.144-149
    • /
    • 2015
  • This study aims to quantitatively evaluate failure pressure of wall-thinned elbow under combined load along with internal pressure, by conducting real-scale burst test and finite element analysis together. For quantitative evaluation, failure pressure data was extracted from the real-scale burst test first, and then finite element analysis was carried out to compare with the test result. For the test, the wall-thinning defect of the extrados or intrados inside the center of 90-degree elbow was considered and the loading modes to open or close the specimen maintaining a certain load or displacement were applied. Internal pressure was applied until failure occurred. As a result, when the bending load was applied under the load control condition, the intrados of the defect was more affected by failure pressure than the extrados, and the opening mode was more vulnerable to failure pressure than the closing mode. When the bending load was applied under the displacement control, it was hardly affected by failure pressure though it was slightly different from the defect position. The result of the finite element analysis showed a similar aspect with the test. Moreover, when major factors such as material properties and pipeline thickness were calibrated to accurate values, the analytical results was more similar to the test results.

Analysis for Operation Point Change in Mode Transition at the Turbopump-Gas Generator Coupled Test (터보펌프-가스발생기 연계시험의 모드 변환 중간 작동점 분석)

  • Nam, Chang-Ho;Kim, Seung-Han;Park, Soon-Young;Kim, Cheul-Woong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.1
    • /
    • pp.43-50
    • /
    • 2009
  • The characteristics at the intermediate operation point of the turbopump-gas generator(TP-GG) coupled test were investigated by analytical method. The pump outlet pressure, gas generator mixture ratio, gas generator pressure, and temperature were examined considering risk minimization of test. The engine system shows different behavior from the TP-GG coupled test at the intermediate operation point since the combustion pressure feeds back to the flow rate in the lines. The advanced valve changes in the combustor line helps less risky mode transition.

Test and Evaluation based on Standard Regulation of USA Federal Automotive Safety of Assistant Driver's Seat Airbag at Low Risk Deployment Passenger Airbag using Passenger Protection Wrap (승객보호용 랩을 적용한 저위험성 조수석 에어백의 미국 연방 자동차안전 기준법규에 의거한 시험과 평가)

  • Kim, Dong-Eun;Kim, Jin-Hyeong;Kang, Myung-Chang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.1
    • /
    • pp.61-67
    • /
    • 2016
  • The airbag is a widely accepted device for occupant protection in the automotive industry. As the injuries induced by airbag deployment have become a critical issue, revisions to Federal Motor Vehicle Safety Standard (FMVSS) 208 were required to create advanced airbags that can protect occupants of varying statures. In this paper, we developed a new low-risk deployment passenger airbag by adding the Passenger Protection Wrap (PPW). The PPW reduces the cushion impact force to the occupant in order to ensure pressure dispersion. A series of tests were conducted by using FMVSS 208 test procedures to demonstrate the proposed system. It was found that the system not only satisfied the injury criteria of FMVSS 208 but was also effective for protecting passengers of all sizes (male, small female, 3-year-old, 6-year-old).

A Development of Program on the Hydraulic Calculation in Sprinkler System Based on the Piping Network Analysis Method (배관망 해석 방법을 이용한 스프링클러 시스템의 수리계산 프로그램 개발)

  • 송철강;이명호;강계명
    • Fire Science and Engineering
    • /
    • v.16 no.1
    • /
    • pp.24-29
    • /
    • 2002
  • The purpose of this study is developing the computer program for hydraulic design sprinkler systems have performed the means for the general use of network analysis method. The computer program is based on the theoretical concepts of the related Hazen-Williams equations, a modified Bernoulli equations, and the Hardy Cross method of pipe network analysis. Looped piping calculations are solved by using either the Hardy Cross method or the other iteration methods. While the other methods are solved using simultaneous equations, the Hardy Cross method is concerned with one loop at a time using reiterative process. Due to its simplicity the Hardy Cross method will be the primary method described in this thesis. The purpose of this study is to develope hydraulic calculation program by using algorithm for network analysis method. The development of computer program for the hydraulic design of sprinkler systems will perform the means in the performance-based sprinkler system design.