• Title/Summary/Keyword: 안전 밸브

Search Result 311, Processing Time 0.027 seconds

Priority Analysis of Cause Factors of Safety Valve Failure Mode Using Analytical Hierarchy Process (AHP를 활용한 안전밸브(PSV) 고장모드의 Cause Factors 우선순위 분석)

  • Kim, Myung Chul;Lee, Mi Jeong;Lee, Dong Geon;Baek, Jong-Bae
    • Korean Chemical Engineering Research
    • /
    • v.60 no.3
    • /
    • pp.347-355
    • /
    • 2022
  • The safety valve (PSV) is a safety device that automatically releases a spring when the pressure generated by various causes reaches the set pressure, and is restored to a normal state when the pressure falls below a certain level. Periodic inspection and monitoring of safety valves are essential so that they can operate normally in abnormal conditions such as pressure rise. However, as the current safety inspection is performed only at a set period, it is difficult to ensure the safety of normal operation. Therefore, evaluation items were developed by finding failure modes and causative factors of safety valves required for safety management. In addition, it is intended to provide decision-making information for securing safety by deriving the priority of items. To this end, a Delphi survey was conducted three times to derive evaluation factors that were judged to be important in relation to the Failure Mode Cause Factor (FMCFs) of the safety valve (PSV) targeting 15 experts. As a result, 6 failure modes of the safety valve and 22 evaluation factors of its sub-factors were selected. In order to analyze the priorities of the evaluation factors selected in this way, the hierarchical structure was schematized, and the hierarchical decision-making method (AHP) was applied to the priority calculation. As a result of the analysis, the failure mode priorities of FMCFs were 'Leakage' (0.226), 'Fail to open' (0.201), 'Fail to relieve req'd capacity' (0.152), 'Open above set pressure' (0.149), 'Spuriously' 'open' (0.146) and 'Stuck open' (0.127) were confirmed in the order. The lower priority of FMCFs is 'PSV component rupture' (0.109), 'Fail to PSV size calculation' (0.068), 'PSV Spring aging' (0.065), 'Erratic opening' (0.059), 'Damage caused by improper installation and handling' (0.058), 'Fail to spring' (0.053), etc. were checked in the order. It is expected that through efficient management of FMCFs that have been prioritized, it will be possible to identify vulnerabilities of safety valves and contribute to improving safety.

Study on Flow Property and Structural Analysis of Gas Generator Oxidizer On/Off Valve (가스발생기 산화제 개폐밸브의 내부 유동특성 및 구조해석에 관한 연구)

  • Lee, Jongl-Yul;Huh, Hwan-Il;Ahn, Yang-Woo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.6
    • /
    • pp.48-55
    • /
    • 2009
  • The purpose of using Gas Generator Oxidizer On/Off Valve(GOV) is to control opening and closing of oxidizer mass flow. This paper describes analytical results of flow and structural properties for four different GOV models, using commercial software such as Fluent(Ver. 6.3.26) and NASTRAN(2005 r.2), PATRAN(2005 r.2). Analytical results show that GOVs could generate 2.3~3.8 kg/s of oxidizer mass flow rate and come up with 1.09~1.42 of safety factor.

Computational Fluid Dynamics of Hydraulic Valve Meter (밸브 수압측정기의 유동해석)

  • Lee, Jong-Sun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.5
    • /
    • pp.1963-1968
    • /
    • 2012
  • In this research paper a hydraulic valve meter for the measurement of water pressure in fields was designed by using three dimensional automatic design program CATIA. And, also computational fluid dynamics was applied to the designed hydraulic valve meter in order to obtain flow distributions due to internal pressures. This analytical results will be provided as fundamental data in the development of new concepts of hydraulic valve meter and the hydraulic valve meter in development may reduce valve checking times and improve safety by preventing accidents earlier.

FE Analysis on the Screwed Safety of a Valve for a LPG Bombe (LPG 용기용 밸브의 체결안전성에 관한 유한요소해석)

  • Kim, Chung-Kyun;Oh, Kyong-Seok
    • Journal of the Korean Institute of Gas
    • /
    • v.11 no.4
    • /
    • pp.79-84
    • /
    • 2007
  • In this paper, the finite element analysis of a valve screw for a LPG cylinder has been presented on the leakage safety and strength one, which are computed and investigated by a contact normal stress and von Mises stress between a female screw of a valve and a male screw of a neck ring in a LPG bombe. The LP gas charging pressure of a LPG bombe is $8{\sim}9kg/cm^2$, which is pressurized to the screw sealing contact areas between a valve and a LP gas cylinder. The peak failures of the screw tooth height due to a scratch wear and chipping loss of the contact area may decrease screw tooth strength and increase a leakage of a LP gas. These are strongly affect to the contact normal and von Mises stresses of the valve screws. The FEM computed results show that the tooth height loss due to a wear and chipping failure of the screw peak does not affect to the LP gas leak and strength of a valve screw theoretically. But if the tooth wear of the screw height of a brass valve overpasses the critical strength safety of the valve, the valve screw may be failed in fastening the valve and a LP gas bombe suddenly.

  • PDF

Performance Analysis of Emergency Shut-Off Safety Valve (긴급차단용 안전밸브의 성능해석)

  • Song, H. Y.;Park, K. A.;Ko, S.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.413-418
    • /
    • 2001
  • Emergency shut-on valve was developed to shut off natural gas at the front of a gas meter in the house. The shut-off flow rate and differential pressure of this valve was controlled by adjusting the distance between the spool and magnet. Also the spool shape was an important factor in the performance of this valve. The experimental and computational results will be useful for the design having better performance.

  • PDF

A Study on Quantitative Human Reliability Analysis (정량적 인간신뢰성평가방법의 연구)

  • 제무성
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 2002.05a
    • /
    • pp.346-355
    • /
    • 2002
  • THERP (Technique for Human .Error Rate Prediction) 방법론은 원전의 확률론적 위험성 평가(PSA)시 운전원과 작업자의 인간오류평가에 가장 널리 사용되고 있는 방법이다. HRA Handbook이라고도 불리는 이 모델은 운전원 행위를 시스템 부품의 한 요소로 가정하고 인간오류를 평가한다. 본 논문은 이 방법론을 이용하여 원전 등과 같이 위험시설물 중의 하나인 개스밸브기지에서의 작업자 보수시 인적오류를 평가하고 기계적 오류와 합께 인적오류의 기여도를 계산하였다 본 방법론은 원전, 개스밸브기지 뿐만아니라 석유화학 플랜트와 같은 위험시설물의 인적오류 평가에도 유연하게 사용될 수 있음을 보여주었다.(중략)

  • PDF

Technology Trend of Propellant Tank Vent Relief Valve for Launch Vehicle (발사체용 추진제 탱크 벤트릴리프 밸브 기술 동향)

  • Koh, Hyeon-Seok
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.9 no.1
    • /
    • pp.130-138
    • /
    • 2011
  • A vent relief valve performs as a safety valve, which ensures ventilation of propellant tank during filling and protection from tank overpressure after filling. Because of the reliability and cost saving, the virtually same vent relief valve has been used on all US cryogenic liquid fueled launch vehicles. Some modification to the valve has been applied to satisfy the various mission requirements of launch vehicles. This paper reviews the main technology trends of the vent relief valve applied to the propellant feed system for launch vehicle with respect to design and manufacture. This paper also introduces the operating technology of vent relief valve applied for launch vehicles of advanced countries in space development.

  • PDF

Structural Analysis of Hydraulic Valve Meter (밸브 수압측정기의 구조해석)

  • Lee, Jong-Sun;Shin, Bum-Hoon
    • Proceedings of the KAIS Fall Conference
    • /
    • 2011.05b
    • /
    • pp.947-950
    • /
    • 2011
  • 기존의 밸브 수압측정기는 압력조절을 수동으로 조절함으로서 정확한 압력측정을 할 수 없는 불편함이 있었다. 이를 밸브의 수압측정 시 압력조절센서를 이용하여 압력조절을 안전하고 정확하게 개선한다. 또한 3차원 유한요소 코드인 ANSYS를 활용하여 설계된 수압측정기에 대하여 구조해석을 수행하여 수압측정기 내부압력에 따른 내부누수, 응력, 변형률, 총변형량 등을 구하였다.

  • PDF

Present State and Tendency of the Preventive Maintenance for Major Components in Nuclear Power Plants (원전 주요기기의 예방정비 현황 및 연구 동향)

  • Park, Sung-Keun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.407-412
    • /
    • 2008
  • 원자력발전소의 안전성 확보를 위해서, 설비의 유지 관리 기법은 고장이 발생했을 때 조치하는 고장정비에서부터 고장을 미연에 방지하기 위한 예방정비, 예측정비 그리고 상태기반정비로 진행되어 가고 있다. 국내 원자력발전소에서는 고장정비와 예방 정비가 적용되고 있으며, 예측정비와 상태기반정비에 대한 연구가 수행되고 있다. 본 논문에서는 모터구동밸브, 공기구동밸브, 역지밸브 그리고 펌프에 대한 예방정비 현황과 기술 개발 동향에 대해 살펴보았다.

  • PDF