Lee, Gi Ha;Le, Xuan-Hien;Yeon, Min Ho;Seo, Jun Pyo;Lee, Chang Woo
Journal of Korean Society of Disaster and Security
/
v.14
no.3
/
pp.17-27
/
2021
In this study, classification models were built using machine learning techniques that can classify the soil creep risk into three classes from A to C (A: risk, B: moderate, C: good). A total of six machine learning techniques were used: K-Nearest Neighbor, Support Vector Machine, Logistic Regression, Decision Tree, Random Forest, and Extreme Gradient Boosting and then their classification accuracy was analyzed using the nationwide soil creep field survey data in 2019 and 2020. As a result of classification accuracy analysis, all six methods showed excellent accuracy of 0.9 or more. The methods where numerical data were applied for data training showed better performance than the methods based on character data of field survey evaluation table. Moreover, the methods learned with the data group (R1~R4) reflecting the expert opinion had higher accuracy than the field survey evaluation score data group (C1~C4). The machine learning can be used as a tool for prediction of soil creep if high-quality data are continuously secured and updated in the future.
Journal of the Korea Society of Computer and Information
/
v.26
no.4
/
pp.1-9
/
2021
In this paper, we propose a training algorithm of support vector machine (SVM) with a sensitive variable. Although machine learning models enable automatic decision making in the real world applications, regulations prohibit sensitive information from being used to protect privacy. In particular, the privacy protection of the legally protected attributes such as race, gender, and disability is compulsory. We present an efficient least square SVM (LSSVM) training algorithm using a fully homomorphic encryption (FHE) to protect a partial sensitive attribute. Our framework posits that data owner has both non-sensitive attributes and a sensitive attribute while machine learning service provider (MLSP) can get non-sensitive attributes and an encrypted sensitive attribute. As a result, data owner can obtain the encrypted model parameters without exposing their sensitive information to MLSP. In the inference phase, both non-sensitive attributes and a sensitive attribute are encrypted, and all computations should be conducted on encrypted domain. Through the experiments on real data, we identify that our proposed method enables to implement privacy-preserving sensitive LSSVM with FHE that has comparable performance with the original LSSVM algorithm. In addition, we demonstrate that the efficient sensitive LSSVM with FHE significantly improves the computational cost with a small degradation of performance.
Seungeon Song;Sangdong Kim;Bong-Seok Kim;Jeong Tak Ryu;Jonghun Lee
Journal of Korea Society of Industrial Information Systems
/
v.29
no.5
/
pp.21-32
/
2024
This paper proposes a smart safety system that combines low-cost CW(Continuous Wave) radar and IMU sensors to enhance blind spots that pose safety risks to workers in industrial manufacturing environments. The system employs a 24 GHz radar and a 6-axis IMU sensor to detect worker movements and utilizes a machine learning model to recognize worker situations in vibrating manufacturing sites. The ensemble boosting tree-based model achieved over 92.8% worker detection accuracy, demonstrating its effectiveness in improving safety in industrial settings.
Journal of Korean Society of Disaster and Security
/
v.13
no.2
/
pp.27-38
/
2020
Climate variations have become worse and diversified recently, which caused catastrophic disasters for our communities and ecosystem including economic property damages in Korea. Heat wave of summer season is one of causes for such damages of which outbreak tends to increase recently. Related short-term forecasting information has been provided by the Korea Meteorological Administration based on results from numerical forecasting model. As the study area, the ◯◯ province was selected because of the highest mortality rate in Korea for the past 15 years (1998~2012). When comparing the forecasted temperatures with field measurements, it showed RMSE of 1.57℃ and RMSE of 1.96℃ was calculated when only comparing the data corresponding to the observed value of 33℃ or higher. The forecasting process would take at least about 3~4 hours to provide the 4 hours advanced forecasting information. Therefore, this study proposes a methodology for temperature prediction using LSTM considering the short prediction time and the adequate accuracy. As a result of 4 hour temperature prediction using this approach, RMSE of 1.71℃ was occurred. When comparing only the observed value of 33℃ or higher, RMSE of 1.39℃ was obtained. Even the numerical prediction model of the whole range of errors is relatively smaller, but the accuracy of prediction of the machine learning model is higher for above 33℃. In addition, it took an average of 9 minutes and 26 seconds to provide temperature information using this approach. It would be necessary to study for wider spatial range or different province with proper data set in near future.
Proceedings of the Korea Inteligent Information System Society Conference
/
2001.06a
/
pp.383-389
/
2001
된 연구에서 대상으로 하고 있는 LG 정유 광양항 제품부두는 7 선석(Berth)에 재화중량(DWT) 300톤에서 48000 톤의 선박까지 다양한 선박이 이용하고 있으며, 해상의 기상상태에 따른 선박 입출향 통제 지침 설정이 어렵고, 현재 사용하고 있는 지침의 근거가 명확하지 않아 현재의 부두 운영이 비효율적이거나 안전성이 결여되어 있다고 할 수 있다. 따라서 이를 개선하기 위한 합리적인 부두운영 제한조건 개발이 절실히 요구되었다. 본 논문에서는 대상 부두의 특성, 대상 선박의 특성, 하중상태, 선박 운항자의 특성 등을 고려하여 해상/기상 상황(바람, 조류 및 파랑)에 따른 부두 입출항 가능 여부를 정량적으로 판단하고, 안전성 향상 방안을 제시할 수 있는 의사결정 시스템을 개발하고 5번, 7번 선석을 대상으로 이를 검증하였다. 여기서는 입출항 여부를 정량적으로 판단하여 결과를 제시하기 위해서 유전적 프로그래밍(Genetic Programming)을 이용한 기계학습 방법을 이용하였으며, GP의 방대한 계산량을 줄이기 위한 가중 선형 연상 기억(Weighted Linear Associative Memory: WLAM) 방법의 도입 및 전역 최적점을 쉽게 찾기 위한 Group of Additive Genetic Programming Trees(GAGPT)를 도입함으로써 학습 성능을 개선하였다.
Proceedings of the Korea Water Resources Association Conference
/
2022.05a
/
pp.384-384
/
2022
과거의 우리나라 대설피해 양상을 살펴보면 지역적으로 집중되어 피해가 발생하는 것이 특징이다. 그러나 현재는 전국적으로 대설피해가 가중되는 추세이며, 이에 따라 대설피해에 대비 가능한 대책의 강구가 필요한 실정이다. 그러나 피해 발생 시 정확한 피해 예측으로 사전에 재난을 대비가 가능한 수준의 연구는 미흡한 실정이다. 따라서 본 연구에서는 다양한 통계기법과 기계학습 기법을 이용하여 대설로 인해 발생한 피해액을 개략적으로 예측이 가능한 모형을 개발하고자 하였다. 대설피해액 예측 모형은 다중회귀분석, 서포트 벡터 머신, 인공신경망 기법, 랜덤포레스트 기법을 이용하여 총 4가지 기법으로 개발하였으며, 독립변수로 사회·경제적 요소, 기상요소를 사용하였고, 종속변수로는 1994년부터 2020년까지 발생한 대설피해 이력의 대설피해액을 사용하였다. 결과적으로 4가지 예측 모형의 예측력 검증 및 기법 간의 예측력을 비교하여 개발한 모형의 적용성을 검토하였다. 본 연구 결과에서 제시한 모형의 개선방안 및 업데이트 방안을 참고하여 후속 연구가 진행된다면 미래에 전국적으로 확대될 대설피해에 대한 대비가 가능할 것으로 기대되며 복구비 및 예방비 투자의 지역적 우선순위를 분석하여 선제적인 대비가 가능할 것으로 판단된다.
Journal of the Korea Society of Computer and Information
/
v.25
no.4
/
pp.19-27
/
2020
In this paper, we propose a machine learning method for diagnosing the failure of a gas pressure regulator. Originally, when implementing a machine learning model for detecting abnormal operation of a facility, it is common to install sensors to collect data. However, failure of a gas pressure regulator can lead to fatal safety problems, so that installing an additional sensor on a gas pressure regulator is not simple. In this paper, we propose various machine learning approach for diagnosing the abnormal operation of a gas pressure regulator with only the flow rate and gas pressure data collected from a gas pressure regulator itself. Since the fault data of a gas pressure regulator is not enough, the model is trained in all classes by applying the over-sampling method. The classification model was implemented using Gradient boosting, 1D Convolutional Neural Networks, and LSTM algorithm, and gradient boosting model showed the best performance among classification models with 99.975% accuracy.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.21
no.3
/
pp.7-14
/
2021
The emergence of the automated smart grid has become an essential device for responding to these problems and is bringing progress toward a smart grid-based society. Smart grid is a new paradigm that enables two-way communication between electricity suppliers and consumers. Smart grids have emerged due to engineers' initiatives to make the power grid more stable, reliable, efficient and safe. Smart grids create opportunities for electricity consumers to play a greater role in electricity use and motivate them to use electricity wisely and efficiently. Therefore, this study focuses on power demand management through machine learning. In relation to demand forecasting using machine learning, various machine learning models are currently introduced and applied, and a systematic approach is required. In particular, the GP learning model has advantages over other learning models in terms of general consumption prediction and data visualization, but is strongly influenced by data independence when it comes to prediction of smart meter data.
Journal of the Korean Institute of Telematics and Electronics C
/
v.35C
no.10
/
pp.38-47
/
1998
The syntactic analysis for the practical machine translation should be able to analyze a long sentence, but the long sentence analysis is a critical problem because of its high analysis complexity. In this paper a sentence segmentation method is proposed for an efficient analysis of a long sentence and the method of determining optimal sentence segmentation positions using statistical information and genetic learning is introduced. It consists of two modules: (1) decomposable position determination which uses lexical contextual constraints acquired from a training data tagged with segmentation positions. (2) segmentation position selection by the selection function of which the weights of parameters are determined through genetic learning, which selects safe segmentation positions with enhancing the analysis efficiency as much as possible. The safe segmentation by the proposed sentence segmentation method and the efficiency enhancement of the analysis are presented through experiments.
With the development of information technology, the size of insurance fraud is increasing rapidly every year, and the method is being organized and advanced in conspiracy. Although various forms of prediction models are being studied to predict and detect this, insurance-related information is highly sensitive, which poses a high risk of sharing and access and has many legal or technical constraints. In this paper, we propose a machine learning insurance fraud prediction model based on blockchain, one of the most popular technologies with the recent advent of the Fourth Industrial Revolution. We utilize blockchain technology to realize a safe and trusted insurance information sharing system, apply the theory of social relationship analysis for more efficient and accurate fraud prediction, and propose machine learning fraud prediction patterns in four stages. Claims with high probability of fraud have the effect of being detected at a higher prediction rate at an earlier stage, and claims with low probability are applied differentially for post-reference management. The core mechanism of the proposed model has been verified by constructing an Ethereum local network, requiring more sophisticated performance evaluations in the future.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.