• Title/Summary/Keyword: 안전한 기계 학습

Search Result 139, Processing Time 0.025 seconds

기계학습 모델 공격연구 동향: 심층신경망을 중심으로

  • Lee, Seulgi;Kim, KyeongHan;Kim, Byungik;Park, SoonTai
    • Review of KIISC
    • /
    • v.29 no.6
    • /
    • pp.67-74
    • /
    • 2019
  • 기계학습 알고리즘을 이용한 다양한 분야에서의 활용사례들이 우리 사회로 점차 확산되어가며, 기계학습을 통해 산출된 모델의 오동작을 유발할 수 있는 공격이 활발히 연구되고 있다. 특히, 한국에서는 딥러닝을 포함해 인공지능을 응용한 융합분야를 국가적 차원에서 추진하고 있으며, 만약 인공지능 모델 자체에서 발생하는 취약점을 보완하지 못하고 사전에 공격을 대비하지 않는다면, 뒤늦은 대응으로 인하여 관련 산업의 활성화가 지연될 수 있는 문제점이 발생할 수도 있다. 본 논문에서는 기계학습 모델에서, 특히 심층 신경망으로 구성되어 있는 모델에서 발생할 수 있는 공격들을 정의하고 연구 동향을 분석, 안전한 기계학습 모델 구성을 위해 필요한 시사점을 제시한다. 구체적으로, 가장 널리 알려진 적대적 사례(adversarial examples) 뿐 아니라, 프라이버시 침해를 유발하는 추론 공격 등이 어떻게 정의되는지 설명한다.

Comparison of Feature Selection Methods using the Statistics of Words in Text Categorization (문서 분류에서 단어의 통계 정보를 이용한 특징 선택 기법의 비교)

  • 임윤택;윤충화
    • Proceedings of the Safety Management and Science Conference
    • /
    • 1999.11a
    • /
    • pp.209-216
    • /
    • 1999
  • 정보 검색 분야의 문서 분류에 기계 학습 기법을 적용할 때 발생하는 가장 큰 문제는 문서를 패턴으로 표현할 때, 하나의 패턴이 가지는 특징의 수가 기계 학습 기법에서 처리할 수 있는 범위를 넘어서는 것이다. 이러한 문제를 해결하기 위하여 특징 선택 기법은 패턴을 구성하고 있는 특징 중에서 실제 문서 분류에 많은 영향을 주는 특징만을 선택하여, 기계 학습 기법에서 쉽게 처리할 수 있을 정도의 패턴을 구성하게 한다. 본 논문에서는 이러한 특징 선택 기법 중에서 IG(Information Gain), Gini index, Relief-F, DF(Document Frequency)를 비교하였다. 실험 결과 문서들에 포함된 모든 고유 단어를 특징의 길이로 하여 패턴을 구성했을 때보다 특징 선택 기법을 적용하여 고유 단어 중 일부를 특징으로 패턴을 구성할 때 기계학습에서 더 향상된 분류 성능을 보였다

  • PDF

Application of Machine Learning Techniques for the Classification of Source Code Vulnerability (소스코드 취약성 분류를 위한 기계학습 기법의 적용)

  • Lee, Won-Kyung;Lee, Min-Ju;Seo, DongSu
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.30 no.4
    • /
    • pp.735-743
    • /
    • 2020
  • Secure coding is a technique that detects malicious attack or unexpected errors to make software systems resilient against such circumstances. In many cases secure coding relies on static analysis tools to find vulnerable patterns and contaminated data in advance. However, secure coding has the disadvantage of being dependent on rule-sets, and accurate diagnosis is difficult as the complexity of static analysis tools increases. In order to support secure coding, we apply machine learning techniques, such as DNN, CNN and RNN to investigate into finding major weakness patterns shown in secure development coding guides and present machine learning models and experimental results. We believe that machine learning techniques can support detecting security weakness along with static analysis techniques.

A Study on the Safety Index Service Model by Disaster Sector using Big Data Analysis (빅데이터 분석을 활용한 재해 분야별 안전지수 서비스 모델 연구)

  • Jeong, Myoung Gyun;Lee, Seok Hyung;Kim, Chang Soo
    • Journal of the Society of Disaster Information
    • /
    • v.16 no.4
    • /
    • pp.682-690
    • /
    • 2020
  • Purpose: This study builds a database by collecting and refining disaster occurrence data and real-time weather and atmospheric data. In conjunction with the public data provided by the API, we propose a service model for the Big Data-based Urban Safety Index. Method: The plan is to provide a way to collect various information related to disaster occurrence by utilizing public data and SNS, and to identify and cope with disaster situations in areas of interest by real-time dashboards. Result: Compared with the prediction model by extracting the characteristics of the local safety index and weather and air relationship by area, the regional safety index in the area of traffic accidents confirmed that there is a significant correlation with weather and atmospheric data. Conclusion: It proposed a system that generates a prediction model for safety index based on machine learning algorithm and displays safety index by sector on a map in areas of interest to users.

분류 알고리즘에 대한 경험적 비교연구

  • 전홍석;이주영
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2000.05a
    • /
    • pp.411-422
    • /
    • 2000
  • 본 연구에서는 결정트리 분야에서 각 분류알고리즘을 살펴보고 통계학의 판별분석과 기계학습(Machine Learning)분야에서 분류알고리즘을 비교하고, 자료에 따라 오분류율을 분석 하였다.

  • PDF

Application of AI technology for various disaster analysis (다양한 재해분석을 위한 AI 기술적용 사례 소개)

  • Giha Lee;Xuan-Hien Le;Van-Giang Nguyen;Van-Linh Ngyen;Sungho Jung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.97-97
    • /
    • 2023
  • 최근 재해분야에서 인공신경망(ANN), 기계학습(ML), 딥러닝(DL) 등 AI 기술이 활용성이 점차 증가하고 있으며, 센싱정보와 연계한 시설물 안전관리, 원격탐사와 연계한 재해감시(녹조, 산사태, 산불 등), 수문시계열(수위, 유량 등) 예측, 레이더·위성강수 자료의 보정과 예측, 상하수도 관망누수예측 등 다양한 분야에서 AI 기술이 적용되고 그 활용성이 검증된 바 있다. 본 연구에서는 ML, DL, 물리기반신경망(Pysics-informed Neural Networks, PINNs)을 이용한 다양한 재해분석 사례를 소개하고, 그 활용성과 한계에 대해서 논의하고자 한다. 주요사례로는 (1) SAR영상과 기계학습을 이용한 재해피해지역(울진 산불) 감지, (2) 국가 디지털 정보를 이용한 산사태 위험지역 판별(인제 산사태) (3) 기계학습 및 딥러닝 기법을 이용한 위성강수 자료의 보정·예측 및 유출해석, (4) 수리해석을 위한 수치해석분야에서의 PINNs의 적용성(1차원 Saint-Venant 식 해석) 평가 연구결과를 공유한다. 특히, 자료의 입·출력 자료만으로 학습된 인공신경망 모형 대신 지배방정식(물리방정식)을 만족하도록 강제한 PINNs의 경우, 인공신경망 모형보다 우수한 모의능력을 보여주었으며, 향후 복잡한 수리모델링 등 수치해석분야에서 그 활용가능성이 매우 높을 것으로 판단된다.

  • PDF

항로표지 배치 적합성 검증 방안에 관한 연구

  • 백인흠;박준모;이미라;하창승
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.06a
    • /
    • pp.81-82
    • /
    • 2022
  • 항로표지는 선박이 항로에서 안전하게 항해하는데 중요한 역할을 하며, 이 때문에 국가에서는 항로표지 배치의 적합성 여부에 대한 검토를 주기적으로 실시하고 있다. 이 연구에서는 기계학습을 이용한 새로운 항로표지 배치 적합성 검증을 위한 알고리즘 및 시스템을 구현하고 실제 항로에 적용 가능한 시스템을 개발하였다.

  • PDF