• 제목/요약/키워드: 안전한 기계 학습

검색결과 139건 처리시간 0.028초

기계학습 모델 공격연구 동향: 심층신경망을 중심으로

  • 이슬기;김경한;김병익;박순태
    • 정보보호학회지
    • /
    • 제29권6호
    • /
    • pp.67-74
    • /
    • 2019
  • 기계학습 알고리즘을 이용한 다양한 분야에서의 활용사례들이 우리 사회로 점차 확산되어가며, 기계학습을 통해 산출된 모델의 오동작을 유발할 수 있는 공격이 활발히 연구되고 있다. 특히, 한국에서는 딥러닝을 포함해 인공지능을 응용한 융합분야를 국가적 차원에서 추진하고 있으며, 만약 인공지능 모델 자체에서 발생하는 취약점을 보완하지 못하고 사전에 공격을 대비하지 않는다면, 뒤늦은 대응으로 인하여 관련 산업의 활성화가 지연될 수 있는 문제점이 발생할 수도 있다. 본 논문에서는 기계학습 모델에서, 특히 심층 신경망으로 구성되어 있는 모델에서 발생할 수 있는 공격들을 정의하고 연구 동향을 분석, 안전한 기계학습 모델 구성을 위해 필요한 시사점을 제시한다. 구체적으로, 가장 널리 알려진 적대적 사례(adversarial examples) 뿐 아니라, 프라이버시 침해를 유발하는 추론 공격 등이 어떻게 정의되는지 설명한다.

문서 분류에서 단어의 통계 정보를 이용한 특징 선택 기법의 비교 (Comparison of Feature Selection Methods using the Statistics of Words in Text Categorization)

  • 임윤택;윤충화
    • 대한안전경영과학회:학술대회논문집
    • /
    • 대한안전경영과학회 1999년도 추계학술대회
    • /
    • pp.209-216
    • /
    • 1999
  • 정보 검색 분야의 문서 분류에 기계 학습 기법을 적용할 때 발생하는 가장 큰 문제는 문서를 패턴으로 표현할 때, 하나의 패턴이 가지는 특징의 수가 기계 학습 기법에서 처리할 수 있는 범위를 넘어서는 것이다. 이러한 문제를 해결하기 위하여 특징 선택 기법은 패턴을 구성하고 있는 특징 중에서 실제 문서 분류에 많은 영향을 주는 특징만을 선택하여, 기계 학습 기법에서 쉽게 처리할 수 있을 정도의 패턴을 구성하게 한다. 본 논문에서는 이러한 특징 선택 기법 중에서 IG(Information Gain), Gini index, Relief-F, DF(Document Frequency)를 비교하였다. 실험 결과 문서들에 포함된 모든 고유 단어를 특징의 길이로 하여 패턴을 구성했을 때보다 특징 선택 기법을 적용하여 고유 단어 중 일부를 특징으로 패턴을 구성할 때 기계학습에서 더 향상된 분류 성능을 보였다

  • PDF

소스코드 취약성 분류를 위한 기계학습 기법의 적용 (Application of Machine Learning Techniques for the Classification of Source Code Vulnerability)

  • 이원경;이민주;서동수
    • 정보보호학회논문지
    • /
    • 제30권4호
    • /
    • pp.735-743
    • /
    • 2020
  • 시큐어코딩은 악의적인 공격 혹은 예상치 못한 오류에 대한 강인함을 제공해줄 수 있는 안전한 코딩 기법으로 정적분석도구의 지원을 통해 취약한 패턴을 찾아내거나 오염 데이터의 유입 가능성을 발견한다. 시큐어코딩은 정적기법을 적극적으로 활용하는 만큼 룰셋에 의존적이라는 단점을 가지며, 정적분석 도구의 복잡성이 높아지는 만큼 정확한 진단이 어렵다는 문제점을 안고 있다. 본 논문은 시큐어코딩을 지원하는 목적으로 기계학습 기법 중 DNN과 CNN, RNN 신경망을 이용하여 개발보안가이드 상의 주요 보안약점에 해당하는 패턴을 학습시키고 분류하는 모델을 개발하며 학습 결과를 분석한다. 이를 통해 기계학습 기법이 정적분석과 더불어 보안약점 탐지에 도움을 줄 수 있을 것으로 기대한다.

빅데이터 분석을 활용한 재해 분야별 안전지수 서비스 모델 연구 (A Study on the Safety Index Service Model by Disaster Sector using Big Data Analysis)

  • 정명균;이석형;김창수
    • 한국재난정보학회 논문집
    • /
    • 제16권4호
    • /
    • pp.682-690
    • /
    • 2020
  • 연구목적: 본 연구는 재난 발생 데이터와 실시간 기상·대기 관련 데이터를 수집하고 정제과정을 통하여 데이터베이스를 구축하고, API로 제공되는 공공 데이터와 연계하여 빅 데이터 기반의 도시안전지수의 서비스 모델을 제안하고자 한다. 연구방법: 재난 발생과 관련한 다양한 정보를 공공 데이터와 SNS를 활용하여 수집하고, 기계학습 알고리즘으로 분석한 결과를 중심으로 이용자 관심지역의 재난상황을 실시간 대시보드로 확인하고 대처하는 방법을 제공하고자 한다. 연구결과: 분야별 지역안전지수와 기상·대기의 상관관계가 높은 속성을 추출하여 예측모델과 비교하면 교통사고 분야의 지역안전지수는 기상·대기 데이터와 상당한 상관관계가 있음을 확인하였다. 결론: 기계학습 알고리즘 기반의 안전지수 예측모델을 생성하여 이용자 관심 지역에 분야별 안전지수를 지도에 표시하는 시스템을 제안하였다.

분류 알고리즘에 대한 경험적 비교연구

  • 전홍석;이주영
    • 대한안전경영과학회:학술대회논문집
    • /
    • 대한안전경영과학회 2000년도 춘계학술대회
    • /
    • pp.411-422
    • /
    • 2000
  • 본 연구에서는 결정트리 분야에서 각 분류알고리즘을 살펴보고 통계학의 판별분석과 기계학습(Machine Learning)분야에서 분류알고리즘을 비교하고, 자료에 따라 오분류율을 분석 하였다.

  • PDF

다양한 재해분석을 위한 AI 기술적용 사례 소개 (Application of AI technology for various disaster analysis)

  • 이기하;레수안히엔;응웬반지앙;응웬반린;정성호
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.97-97
    • /
    • 2023
  • 최근 재해분야에서 인공신경망(ANN), 기계학습(ML), 딥러닝(DL) 등 AI 기술이 활용성이 점차 증가하고 있으며, 센싱정보와 연계한 시설물 안전관리, 원격탐사와 연계한 재해감시(녹조, 산사태, 산불 등), 수문시계열(수위, 유량 등) 예측, 레이더·위성강수 자료의 보정과 예측, 상하수도 관망누수예측 등 다양한 분야에서 AI 기술이 적용되고 그 활용성이 검증된 바 있다. 본 연구에서는 ML, DL, 물리기반신경망(Pysics-informed Neural Networks, PINNs)을 이용한 다양한 재해분석 사례를 소개하고, 그 활용성과 한계에 대해서 논의하고자 한다. 주요사례로는 (1) SAR영상과 기계학습을 이용한 재해피해지역(울진 산불) 감지, (2) 국가 디지털 정보를 이용한 산사태 위험지역 판별(인제 산사태) (3) 기계학습 및 딥러닝 기법을 이용한 위성강수 자료의 보정·예측 및 유출해석, (4) 수리해석을 위한 수치해석분야에서의 PINNs의 적용성(1차원 Saint-Venant 식 해석) 평가 연구결과를 공유한다. 특히, 자료의 입·출력 자료만으로 학습된 인공신경망 모형 대신 지배방정식(물리방정식)을 만족하도록 강제한 PINNs의 경우, 인공신경망 모형보다 우수한 모의능력을 보여주었으며, 향후 복잡한 수리모델링 등 수치해석분야에서 그 활용가능성이 매우 높을 것으로 판단된다.

  • PDF

항로표지 배치 적합성 검증 방안에 관한 연구

  • 백인흠;박준모;이미라;하창승
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2022년도 춘계학술대회
    • /
    • pp.81-82
    • /
    • 2022
  • 항로표지는 선박이 항로에서 안전하게 항해하는데 중요한 역할을 하며, 이 때문에 국가에서는 항로표지 배치의 적합성 여부에 대한 검토를 주기적으로 실시하고 있다. 이 연구에서는 기계학습을 이용한 새로운 항로표지 배치 적합성 검증을 위한 알고리즘 및 시스템을 구현하고 실제 항로에 적용 가능한 시스템을 개발하였다.

  • PDF