• 제목/요약/키워드: 안기태

검색결과 11건 처리시간 0.026초

회원작품

  • 대한건축사협회
    • 건축사
    • /
    • 2호통권132호
    • /
    • pp.25-38
    • /
    • 1980
  • PDF

회원작품

  • 대한건축사협회
    • 건축사
    • /
    • 4호통권98호
    • /
    • pp.61-74
    • /
    • 1977
  • PDF

회원작품

  • 대한건축사협회
    • 건축사
    • /
    • 8호통권90호
    • /
    • pp.29-42
    • /
    • 1976
  • PDF

양극산화 인가전압에 따른 장범위 규칙 다공성 알루미나 멤브레인의 제조 (Fabrication of Long-range Ordered Porous Alumina Membranes with Various Voltages Applied for Hard Anodization)

  • 장현철;최정미;안기태;이내성;박윤선;석중현
    • 대한금속재료학회지
    • /
    • 제50권1호
    • /
    • pp.59-63
    • /
    • 2012
  • Studying the long-range ordering of nanopores on the anodic aluminum oxide (AAO) membranes under a hard anodization (HA) approach is crucial in producing well-aligned nanopores on the AAO membranes. Electro-polishing in a mixture of ethanol and perchloric acid for 5 min removed marks formed by rolling and produced flat surfaces on aluminum substrates. The AAO was formed by the first HA process, providing seeds for the subsequent production of uniform AAO nanopores. The second HA process carried out on the seeds produced well-aligned, uniform AAO nanopores. The AAO nanopores, varying in size and shape, were observed with voltages applied for HA. This study provides a route for controlling the size and shape of AAO nanopores by changing the applied voltages.

이중벽 탄소나노튜브의 정제와 투과도에 따른 전계방출 특성 평가 (Field Emission Property of Double-walled Carbon Nanotubes Related to Purification and Transmittance)

  • 안기태;장현철;류승철;이한성;이내성;한문섭;박윤선;홍완식;박경완;석중현
    • 대한금속재료학회지
    • /
    • 제49권1호
    • /
    • pp.79-84
    • /
    • 2011
  • Double-walled carbon nanotubes (DWCNTs) with high purity were produced by the catalytic decomposition of tetrahydrofuran (THF) using a Fe-Mo/MgO catalyst at $800^{\circ}C$. The as-synthesized DWCNTs typically have catalytic impurities and amorphous carbon, which were removed by a two-step purification process consisting of acid treatment and oxidation. In the acid treatment, metallic catalysts were removed in HCl at room temperature for 5 hr with magnetic stirring. Subsequently, the oxidation, using air at $380^{\circ}C$ for 5 hr in the a vertical-type furnace, was used to remove the amorphous carbon particles. The DWCNT suspension was prepared by dispersing the purified DWCNTs in the aqueous sodium dodecyl sulfate solution with horn-type sonication. This was then air-sprayed on ITO glass to fabricate DWCNT field emitters. The field emission properties of DWCNT films related to transmittance were studied. This study provides the possibility of the application of large-area transparent CNT field emission cathodes.