• Title/Summary/Keyword: 악취제거

Search Result 289, Processing Time 0.041 seconds

Development of Multi-functional Polymer Adsorbent for Purifying the Environmental Pollutants by Photoinduced Graft Polymerization (I) - Photoinduced Grafting of Vinyl Monomers onto Polypropylene Nonwoven (광그라프팅법을 이용한 다기능성 환경오염 정화용 고분자 흡착제의 개발 (I) - 폴리프로펄렌 부직포에의 비닐계 단량체의 광그라프팅)

  • 김상률;박현주;나춘기
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2002.04a
    • /
    • pp.341-343
    • /
    • 2002
  • 인간의 생활수준은 산업의 발달과 함께 꾸준히 향상되고 있으나 환경은 산업발달의 부산물로 배출되는 공해물질들로 인하여 급속히 열악해지고 있다. 대표적인 악취물질로는 암모니아, 황화수소 및 트리메틸아민 등을 들 수 있으며 공간으로부터 악취분자들을 적극적으로 제거하는 탈취소취법에 오늘날 많은 관심이 집중되고 있다. 일반적인 탈취재료는 활성탄, 제올라이트 등의 무기물이 오래전부터 사용되고 있으나 이들의 대표적인 악취물질인 암모니아가스, 황화수소 등 유해가스에 대한 흡착능력은 매우 낮으며 흡착제 형태가 입상이기 때문에 성형가공면에서 한계가 있다. (중략)

  • PDF

A Study on an experimental basis a use deodorize stink of food-waste in order to cooling dehumidification (냉각 제습에 의한 음식물 쓰레기 처리장치 악취제거에 관한 실험적 연구)

  • Park, I.S.;Kim, J.D.
    • Journal of Power System Engineering
    • /
    • v.12 no.1
    • /
    • pp.35-40
    • /
    • 2008
  • This paper presents an effective cooling dehumidification method to remove odorous gas from food-wastes. The odorous gases, such as Styrene, Ammonia, Hydrogen sulfide and Acetaldehyde, are produced in environments where temperature is $50\sim80^{\circ}C$ and humidity is $40\sim70%$. Under such conditions, experiments are performed reiteratively using experiment equipments. The effect of the cooling dehumidification is measured via measuring instrument, and this research is focused on improving efficiency. The effect of cooling dehumidification using measuring instrument is validated. At $80^{\circ}C$, four type of gases that was mentioned previously showed generally better cooling efficiency with a good result for a component concentration. Among them, hydrogen sulfide gas demonstrated the highest reduction of 50%.

  • PDF

Eco-friendly remediation and odor control of a contaminated urban stream using beneficial microorganisms (생물증강법을 이용한 도심 오염 소하천의 친환경적 수질정화 및 악취제어)

  • Chang, Jae-Soo;Song, Jikyung;Kim, In-Soo;Yoo, Jangyeon;Koh, Sung-Cheol
    • Korean Journal of Microbiology
    • /
    • v.51 no.4
    • /
    • pp.389-397
    • /
    • 2015
  • Dongchun, one of the representative streams in urban area, is a downstream that is connected to Hogyechun, Bujeonchun, Jeonpochun, Danggamchun, and Gayachun as its upstream. Hogyechun has been mostly covered with concrete structures for decades, causing sewage pollution from the upstream, overflow of the downstream region and other serious pollution that gave rise to many civil complaints from the residents nearby. In this study, we analyzed 3 stations, including control station for water quality and malodor changes of Hogyechun after applying the microbial augmentation (BM-2) for a few months including the rainy season. Amounts (g/h) of DO in the middle site (Middle) and the downstream site (Borim) increased by 1.7 times compared with the upstream site (Chuhae) after augmentation for about 2 months. Amounts (g/h) of COD and $NO_3{^-}N$ decreased by 2 and 1.7 times, respectively, in the middle and downstream sites while SS increased by 7.5 and 22 times in the middle and downstream sites, respectively. Moreover, odor removal efficiencies at the middle and downstream sites were 65% and 19%, respectively, indicating the microbial activity in reduction of malodor in the polluted stream. The dominant microbial species of the sampling sites were Hydrogenophaga caeni, Sphaerotilus natans, Acidovorax radicis, Acidovorax delafieldii, and Cloacibacterium rupense. Densities of the two species Sphaerotilus natans and Acidovorax delafieldii were significantly increased in the middle site after augmentation which possessed potential odor removal and denitrification activity, respectively. Potential pathogens (e.g., Arcobacter cryaerophilus) were also removed from the middle site after the implementation.

Practical Application of Mn-Cu Metal Catalyst for the Removal of Acetaldehyde (아세트알데히드 제거를 위한 Mn-Cu 금속촉매 실용화에 관한 연구)

  • Jung, Sung-Chul;Lee, Seung-Hwan
    • Journal of Digital Convergence
    • /
    • v.10 no.8
    • /
    • pp.201-210
    • /
    • 2012
  • Because sensing odor varies depending on each person, even if the odor is released in line with the legal emission permission concentration levels, it can still become a social issue if a civil complaint is made. The purpose of this research is to study the possibility of putting Mn-Cu metallic oxide catalysts into practical use to economically eliminate acetaldehyde which produces a odor in the industrial process. An optimal operating parameter to eliminate acetaldehyde was deduced through a performance evaluation in the research laboratory and the performance was verified by applying the parameter into an actual facility as an on-the-site experiment through a Scale-up of pilot size. The operating temperature of the metallic oxide catalysts researched so far was at the minimum close to $220^{\circ}C$, and the $220^{\circ}C$ elimination efficiency was 50% or below. However, having experimented by using a Mn-Cu metallic oxide catalyst in this research, optimum elimination efficiency showed when space velocity (GHSV) was equal to or below 6,000 $hr^{-1}$. The average elimination efficiency was 61.2% when the catalyst controlling temperature was $120^{\circ}C$, 93.3% when the catalyst controlling temperature was $160^{\circ}C$, and 94.9% when catalyst controlling temperature was $180^{\circ}C$, thereby reflecting high elimination efficiency. The specific surface area of the catalyst was $200m^2/g$ before use, however, was reduced to $47.162m^2/g$ after 24 months and therefore showed that despite the decrease in specific surface area as time passed, there was no significant influence on the performance. Having operated Mn-Cu metallic oxide catalyst systems for at least two years on a site where there was no inflow of toxins like sulfur compounds and acidic gases, we were able to confirm that elimination efficiency of at least 90% was maintained.

Semi-pilot Scaled Hybrid Process Treatment of Malodorous Waste Air: Performance of Hybrid System Composed of Biofilter Packed with Media Inoculated with Thiobacillus sp. IW and Return-sludge and Photocatalytic Reactor (악취폐가스의 세미파일럿 규모 하이브리드 공정 처리: Thiobacillus sp. IW 및 반송슬러지를 접종한 담체를 충전한 바이오필터와 광촉매반응기로 구성된 하이브리드시스템의 운전)

  • Lee, Eun Ju;Lim, Kwang-Hee
    • Korean Chemical Engineering Research
    • /
    • v.52 no.2
    • /
    • pp.191-198
    • /
    • 2014
  • A semi-pilot hybrid system composed of a photocatalytic reactor and a biofilter was operated under various operating conditions in order to treat malodorous waste air containing both hydrogen sulfide and ammonia which are major air pollutants emitted from composting factories and many publicly owned treatment works (POTW). When both hydrogen sulfide and ammonia contained in malodorous waste air were treated simultaneously by a biofilter system, its performance of ammonia removal was much more poor than that by a biofilter system treating waste air containing only ammonia, unlike its performance of hydrogen sulfide removal. For semi-pilot hybrid system, the removal efficiencies of hydrogen sulfide and ammonia turned out to be ca. 83 and 65%, respectively. Therefore, for semi-pilot hybrid system, the removal efficiencies of hydrogen sulfide and ammonia was increased by ca. 4 and 30%, respectively, compared to those of semi-pilot biofilter system (control). In addition, the maximum elimination capacities of hydrogen sulfide and ammonia for semi-pilot hybrid system turned out to be ca. 60 and $37g/m^3/h$, respectively. These maximum elimination capacities of hydrogen sulfide and ammonia were estimated to be ca. 9.1% and ca. 23.3% greater than those for semi-pilot biofilter system (control), respectively. Therefore, the semi-pilot hybrid system contributed the enhancement of removal efficiency and the maximum elimination capacity of ammonia in a higher degree than that of hydrogen sulfide, compared to the semi-pilot biofilter system.

Odorous Gas Removal in Biofilter with Powdered Activated Carbon and Zeolite Coated Polyurethane Foam (분말활성탄 및 제올라이트 담지 폴리우레탄 담체를 이용한 바이오필터에서의 악취가스 제거)

  • Lee, Soo-Chul;Kim, Dong-Jin
    • Clean Technology
    • /
    • v.18 no.2
    • /
    • pp.209-215
    • /
    • 2012
  • The performance and removal efficiencies of a pilot scale biofilter were estimated by using ammonia and hydrogen sulfide as the odorous gases. Expanded polyurethane foam coated with powdered activated carbon and zeolite was used as a biofilm supporting medium in the biofilter. Odorous gases from the sludge thickener of a municipal wastewater treatment plant were treated in the biofilter for 10 months and the inlet ammonia and hydrogen sulfide concentrations were 0.1-1.5 and 2-20 ppmv, respectively. The removal efficiencies reached about 100% at the empty bed retention time (EBRT) of 3.6-5 seconds except for the adaptation periods. The pressure drop of the biofilter caused by the gas flow was also low that the maximum attained was 31 mm $H_2O$ during the operation. Its stability was confirmed in the long term due to the fact that the biofilter and the polyurethane medium had a minimum plugging and compression. The microbial community on the medium is critical for the performance of the biofilter especially the distribution of ammonia oxidizing bacteria (AOB) and sulfur oxidizing bacteria (SOB). The distribution of Nitrosomonas sp. (AOB) and Thiobacillus ferroxidans (SOB) was confirmed by FISH (fluorescence in situ hybridization) analysis. The longer the operation time, the more microbial population observed. Also, the medium close to the gas inlet had more microbial population than the medium at the gas outlet of the biofilter.

Removing Malodor Using Photocatalyst and Infrared (광촉매와 적외선을 이용한 악취저감)

  • Jeon, Tae-Yeong;Kim, Jae-Yong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.8
    • /
    • pp.528-533
    • /
    • 2014
  • Recently, people interest in environmental pollution and attempt to improve the indoor air quality contaminated with various pollutants since it is very important to construct healthy and comfortable living environment. In the current study, we used the technology that has first received the certification of green technology for improving the removal efficiency of malodor causing substances. This green technology is a new technology to increase the reactivity of the odorous substances with OH radicals for oxidation reaction by using an infrared lamp in the existing air purification system. Comparing the efficiency of the green technology with the infrared lamp to that of the existing technology of air cleaner, there was a difference in the decomposition efficiency depending on the initial concentrations and speciation of the odorous substances. The removal efficiencies of contaminants were enhanced by 16.9 and 13.2% at low and high concentrations, respectively.

Treatment of gas from the vent of a fine chemical plant using a pilot-scale biofilter (파일럿 규모 바이오필터를 이용한 정밀화학공장 배출가스의 처리)

  • Ryu, Hee-Wook;Lee, Tae-Ho;Park, Chang-Ho
    • KSBB Journal
    • /
    • v.24 no.1
    • /
    • pp.47-52
    • /
    • 2009
  • A pilot-plant biofilter (1750 mm W ${\times}$ 2750 mm L ${\times}$ 2000 mm H) packed with polyurethane foam (20 mm W ${\times}$ 20 mm L ${\times}$ 20 mm H) was installed in an fine chemical plant emitting gas streams containing ethyl alcohol, ethyl acetate, and dichloromethane. The biofilter was successfully operated for 30 days under highly fluctuating incoming concentrations (maximum 3500 ppm) at a residence time of 36 and 60 sec. Both ethyl alcohol and ethyl acetate were removed more than 95%, but dichloromethane removal was less than 50%. Malodor was also removed more than 90% from 17 days after start up.