Proceedings of the Korea Information Processing Society Conference
/
2014.11a
/
pp.905-908
/
2014
악성댓글은 인터넷 상에서 상대방이 올린 글에 대한 비방, 험담 등을 하는 악의적인 댓글을 의미한다. 사용자에게 스마트 모바일 기기, 소셜 네트워크 서비스 등의 편리한 서비스를 제공함에 따라 악성댓글에 대한 피해도 꾸준히 증가하고 있다. 본 논문에서 제안하는 방법은 댓글로부터 간단한 형태소 분석과 패턴 추출 과정을 거쳐 단어장을 형성한다. 단어장을 바탕으로 댓글에 포함된 단어가 악성댓글과 비악성댓글에서 나타날 확률을 구하고 이를 기반으로 주어진 댓글이 악성댓글인지 아닌지를 판별한다. 실험결과를 통하여 본 논문에서 제안하는 악성댓글을 판별하는 방법을 평가한다.
Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
/
v.8
no.12
/
pp.817-826
/
2018
As malicious comments are emerging as social problems, the solution is needed. Many studies have been conducted in various perspectives to understand and prevent malicious comments. In the previous researches, the neutralization of malicious comments has attracted attention as an important factor explaining the malicious comments, but the difference of the degree of neutralization according to the gender has not been rarely considered. In addition, although there are many environmental characteristics that are different from reality in online, research with malicious comments is insufficient. Based on these facts, this study examined moderating effects of gender on relationship between malicious comments and neutralization, and demonstrated the effects of online environmental factors (anonymity, lack of social presence) on malicious comments. As a result of the study, we discovered that the influence of online environmental factors was not found, but neutralization of malicious comments had strong direct influence on malicious comments and moderating effect of gender difference. Based on the results of this study, we discuss academic and practical implications and suggest limitations of research and future research directions.
Problems caused by malicious comments occur on many social media. In particular, YouTube, which has a strong character as a medium, is getting more and more harmful from malicious comments due to its easy accessibility using mobile devices. In this paper, we designed and implemented a YouTube malicious comment detection system to identify malicious comments in YouTube contents through LSTM-based natural language processing and to visually display the percentage of malicious comments, such commentors' nicknames and their frequency, and we evaluated the performance of the system. By using a dataset of about 50,000 comments, malicious comments could be detected with an accuracy of about 92%. Therefore, it is expected that this system can solve the social problems caused by malicious comments that many YouTubers faced by automatically generating malicious comments statistics.
The harmful effects of online malicious comments are continuously increasing. Many previous studies have confirmed that neutralization of malicious comments is a key predictor. Neutralization is theoretically composed of seven multidimensional concepts, and the significance of neutralization factors varies depending on the type of deviant behavior. This study focuses on the fact that the malicious comment researches have considered the neutralization techniques in a single dimension as opposed to demonstrating the multidimensional neutralization techniques in the deviant behavior research. On the other hand, the role of arbitrator in deviant behavior can contribute to restraining deviant behavior, but the research of intervention intention is relatively lacking in malicious comments research. This study, composed of two complementary studies, tried to find out the related factors of malicious comments and intervention intention. As a result of study, This study revealed that malicious commentator uses the neutralization techniques of condemn the condemners and denial of responsibility. In addition, we found that affective empathy has a significant effect on the intervention intention in malicious comments.
Kim, Na-Gyeong;Kim, Jeong-Min;Lee, Hye-Won;Kook, Joong-Jin
Proceedings of the Korea Information Processing Society Conference
/
2021.11a
/
pp.775-778
/
2021
악성 댓글은 언어폭력이며 사이버 범죄의 일종으로 인터넷상에서 상대방이 올린 글에 비방이나 험담을 하는 악의적인 댓글을 말한다. 악성 댓글을 단순히 차단하는 다른 프로그램들과는 달리 해당 영상의 악성 댓글의 비율을 알려주고 악플러들의 닉네임과 그 빈도를 나타내주는 것으로 차별화를 두었다. 따라서 많은 유튜버들이 겪는 악성 댓글 문제들을 탐지하여 유튜브에 달리는 악성 댓글들을 탐지하고 시각화하여 제공한다.
Annual Conference on Human and Language Technology
/
2015.10a
/
pp.178-180
/
2015
본 논문에서는 기계 학습(Machine Learning)을 이용하여 댓글의 악성 여부를 분류하는 시스템에 대해 설명한다. 댓글은 문장의 길이가 짧고 맞춤법이 잘 되어있지 않는 특성을 가지고 있다. 따라서 댓글 분석을 위해 형태소 분석 결과와 문자단위 Bi-gram, Tri-gram을 자질로 이용한다. 전처리 된 댓글에서 각 자질 추출 방법에 따라 자질을 추출한다. 추출된 자질을 이용하여 기계학습 알고리즘의 모델을 학습하고 댓글의 악성 여부 분류에 활용한다. 본 논문에서는 댓글의 악성 여부 판별을 위한 자질 추출방법을 제안하고 실험을 통해 이에 대한 효용성을 검증하였다.
Kim, Young-il;Kim, Youngjun;Kim, Youngjin;Kim, Kyungil
The Journal of the Korea Contents Association
/
v.19
no.1
/
pp.548-558
/
2019
Along generalization of internet news comments, malicious comments have been spread and made many social problems. Because writings reflect human mental state or trait, analyzing malicious comments, human mental states could be inferred when they write internet news comments. In this study, we analyzed malicious comments of English and Korean speaker using LIWC and KLIWC. As a result, in both English and Korean, malicious comments are commonly more used in sentence, word phrase, morpheme, word phrase per sentence, morpheme per sentence, positive emotion words, and cognitive process words than normal comments, and less used in the third person singular, adjective, anger words, and emotional process words than normal comments. This means people are state that they can not control their feeling such as anger and can not think well when they write news comments. Therefore, when internet comments were written, service provider should consider the way that commenters monitor own writings by themselves and that they prevent the other users from getting close to comments included many negative-emotion words. In other sides, it is discovered that English and Korean malicious comments was discriminated by authenticity. In order to be more objective, gathering data from various point of time is needed.
A comment system is essential for communication on the Internet. However, there are also malicious comments such as inappropriate expression of others by exploiting anonymity online. In order to protect users from malicious comments, classification of malicious / normal comments is necessary, and this can be implemented as text classification. Text classification is one of the important topics in natural language processing, and studies using pre-trained models such as BERT and graph structures such as GCN and GAT have been actively conducted. In this study, we implemented a comment classification system using BERT, GCN, and GAT for actual published comments and compared the performance. In this study, the system using the graph-based model showed higher performance than the BERT.
Journal of the Korea Institute of Information and Communication Engineering
/
v.16
no.9
/
pp.2043-2049
/
2012
Because of the growth of internet and development of smart phone technology, peoples are able to connect the internet easily and convenient at anytime, and anywhere. The other hand, that take place many serious social side-effect and one of a typical cases is the problem of malicious replay in weaken of netizen's internet ethics. The problem of malicious replay is increasing more and more the seriousness of the problem and the victims are suffering from much the pains of the trauma by a malicious replay. Therefore, in this paper, we investigate and analyze actual on aware of internet ethics and malicious replay for university students and then we propose the improvement of the problem.
Seyoung Jeong;Byeongjin Kim;Daeshik Kim;Wooyoung Kim;Taeyong Kim;Hyunsoo Yoon;Wooju Kim
Annual Conference on Human and Language Technology
/
2023.10a
/
pp.577-580
/
2023
악성댓글은 인터넷상에서 정서적, 심리적 피해를 주는 문제로 인식되어 왔다. 본 연구는 한국어 악성댓글 탐지 분석을 위해 KcBERT 및 다양한 모델을 활용하여 성능을 비교하였다. 또한, 공개된 한국어 악성댓글 데이터가 부족한 것을 해소하기 위해 기계 번역을 이용하고, 다국어 언어 모델(Multilingual Model) mBERT를 활용하였다. 다양한 실험을 통해 KcBERT를 미세 조정한 모델의 정확도 및 F1-score가 타 모델에 비해 의미 있는 결과임을 확인할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.