• Title/Summary/Keyword: 아파트 실거래가격

Search Result 13, Processing Time 0.026 seconds

Real Estate Asset NFT Tokenization and FT Asset Portfolio Management (부동산 유동화 NFT와 FT 분할 거래 시스템 설계 및 구현)

  • Young-Gun Kim;Seong-Whan Kim
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.9
    • /
    • pp.419-430
    • /
    • 2023
  • Currently, NFTs have no dominant application except for the proof of ownership for digital content, and it also have small liquidity problem, which makes their price difficult to predict. Real estate usually has very high barriers to investment due to its high pricing. Real estate can be converted into NFTs and also divided into small value fungible tokens (FTs), and it can increase the the volume of the investor community due to more liquidity and better accessibility. In this document, we implement and design a system that allows ordinary users can invest on high priced real estate utilizing Black Litterman (BL) model-based Portfolio investment interface. To this end, we target a set of real estates pegged as collateral and issue NFT for the collateral using blockchain. We use oracle to get the current real estate information and to monitor varying real estate prices. After tokenizing real estate into NFTs, we divide the NFTs into easily accessible price FTs, thereby, we can lower prices and provide large liquidity with price volatility limited. In addition, we also implemented BL based asset portfolio interface for effective portfolio composition for investing in multiple of real estates with small investments. Using BL model, investors can fix the asset portfolio. We implemented the whole system using Solidity smart contracts on Flask web framework with public data portals as oracle interfaces.

The Development and Application of the Officetel Price Index in Seoul Based on Transaction Data (실거래가를 이용한 서울시 오피스텔 가격지수 산정에 관한 연구)

  • Ryu, Kang Min;Song, Ki Wook
    • Land and Housing Review
    • /
    • v.12 no.2
    • /
    • pp.33-45
    • /
    • 2021
  • Due to recent changes in government policy, officetels have received attention as alternative assets, along with the uplift of office and apartment prices in Seoul. However, the current officetel price indexes use small-size samples and, thus, there is a critique on their accuracy. They rely on valuation prices which lag the market trend and do not properly reflect the volatile nature of the property market, resulting in 'smoothing'. Therefore, the purpose of this paper is to create the officetel price index using transaction data. The data, provided by the Ministry of Land, Infrastructure and Transport from 2005 to 2020, includes sales prices and rental prices - Jeonsei and monthly rent (and their combinations). This study employed a repeat sales model for sales, jeonsei, and monthly rent indexes. It also contributes to improving conversion rates (between deposit and monthly rent) as a supplementary indicator. The main findings are as follows. First, the officetel price index and jeonsei index reached 132.5P and 163.9P, respectively, in Q4 2020 (1Q 2011=100.0P). However, the rent index was approximately below 100.0. Sales prices and jeonsei continued to rise due to high demand while monthly rent was largely unchanged due to vacancy risk. Second, the increase in the officetel sales price was lower than other housing types such as apartments and villas. Third, the employed approach has seen a potential to produce more reliable officetel price indexes reflecting high volatility compared to those indexes produced by other institutions, contributing to resolving 'smoothing'. As seen in the application in Seoul, this approach can enhance accuracy and, therefore, better assist market players to understand the market trend, which is much valuable under great uncertainties such as COVID-19 environments.

Herding Behavior of the Seoul Apartment Market (서울시 아파트시장의 군집행동 분석)

  • Kim, Jung Sun;Yu, Jung Suk
    • Korea Real Estate Review
    • /
    • v.28 no.1
    • /
    • pp.91-104
    • /
    • 2018
  • In this study, the occurrence and degree of herding behavior as a market participant behavior in a housing market were analyzed. For the analysis method, the actual sales price was applied in the CSAD (Cross-sectional Absolute Deviation) model, which has been used the most of late for herding behavior analysis. For the analysis contents, these were subdivided into region, elapsed year, size, and market condition to analyze the regionality and the internal and external factors. For the study results, first, there was no herding behavior in the entire region of Seoul. By region, herding behavior occurred in the downtown, southeast, and northwest regions, which coincided with the results of the precedent study (Ngene et al., 2017). Second, in the market analysis by elapsed year, herding behavior was captured in dilapidated dwellings. By size, herding behavior was observed in small-scale ($60m^2$ or less) apartments and in $85m^2$ or higher and less than $102m^2$ national housing units. Third, during the time of the global financial crisis, herding behavior was not observed in all the regions, whereas when the market situations were in a boom cycle, it was observed in the northwest region. These results suggest that there is a difference from the stock market, where in a period of recession, herding behavior occurs intensively with the expanding fear of incurring losses. This study is significant in that it analyzed the market participant behaviors in the behavioral economic aspects to better understand the abnormal phenomenon in a housing market, and in that it additionally provides a psychological factor - market participant behavior - in market analysis.