• Title/Summary/Keyword: 아조벤젠

Search Result 50, Processing Time 0.025 seconds

Photo-responsive Smart Polymer Materials (광 응답형 스마트 고분자 소재)

  • Yu, Jong-Su;Lee, Seong-Yun;Na, Hee-Yeong;Ahn, Tae-Jung;Kim, Hyun-Kyoung
    • Elastomers and Composites
    • /
    • v.47 no.4
    • /
    • pp.282-291
    • /
    • 2012
  • Control of shape/volume, mechanical, optical, electrical, and chemical switching of materials by external stimuli such as light, temperature, pH, electric field, and pressure has attracted great attention. Among these materials, photo-responsive materials containing photochromic compounds such as azobenzene, spiropyran, and cinnamic acid groups have been the subject of intense interest in recent years. In this review, we describe the recent progress in the area of azobenzene containing polymer materials that can convert light energy into mechanical energy directly. Especially we focus our attention on light-driven actuators such as artificial muscle, motor, and valve. We summarize the photomechanical effects in liquid crystal elastomer, amorphous polymer, monolayer, and supramolecules containing azobenzene, respectively.

Photochemical Modulation of Bragg-Reflection Wavelengths in Cholesteric Liquid Crystals Containing a Chiral Azobenzene

  • Lee, Hyoung-Kwan;Goo, Chul-Whoi;Tomiki Ikeda
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.18 no.2
    • /
    • pp.41-54
    • /
    • 2000
  • Photochemical modulation of Bragg-reflection wavelengths based on isomerization of an azobenzene (Azo) and subsequent change in reflectance was investigated in cholesteric liquid crystals (ChLCs) which reflect light in visible wavelength region. Irradiation at 366 nm, which causes an efficient transcis isomerization of Azo, led to change in reflected color of ChLCs toward shorter wavelengths with a concomitant lowering of phase transition. Reversible change in color was induced all-optically by alternate irradiation at effective wavelengths for reversible isomerization of Azo. A considerable variation in reflectance was also observed when the photoinduced change in color was measured by a probe light with the same handedness as the ChLCs. The spectral Position of selective light reflection in the initial states played an important role to produce a normal-mode and a reverse-mode switching in photoinduced modulation of reflectance of the ChLCs with respect to the probe light.

  • PDF

A Study on the Photoisomerization of Monolayer Film of Long Chain Fatty Acids Containing Azobenzene (아조벤젠을 함유한 장쇄 지방산 단분자 막의 광이성화 현상에 관한 연구)

  • Kim, Moo-Goon;Park, Tae-Gone;Park, Keun-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.75-85
    • /
    • 1996
  • The absorption spectra of synthesis of long chain fatty acid containing azobenzene start from p-(p'-hydroxy phenyl azo)-benzoic acid was investigated by ultraviolet spectrophotometery in chloroform solvent at the various temperature. In addition, The pressure-area of the water-air interface was obtained and the LB film was fabricated onto a quartz slide and quartz crystal by conventional Langmuir-Blodgett(LB) method. The UV absorption spectra of Langmuir-Blodgett(LB) film on quartz slide and spectrum of monolayer formed on quartz crystal have been measured. Long chain fatty acid containing azobenzene are induced phtoisomerization by the application of u. v. and visible light irradiation alternatively the reversibility of phtoisomerization was more clear difference when the number of $C_{n}$ increased but, not so good at $C_{14}-azo$. At the pressure-area isotherms, the value of surface pressure increment were decreased when the number of $C_{n}$ increased. A surface pressure of 20mN/m was obtained as a proper one for a film deposition. The photoisomerization at LB films were induced by application of UV and visible light irradiation alternatively. So the LB film of long chain fatty acid containing azobenzene has possibility to being applied to functional molecular devices such as photomemory and light switching.

Synthesis and Properties of Di-azomesogenic Liquid Crystal Compounds with Terminal Substituents (말단에 치환기를 갖는 이-아조메소젠 액정화합물의 합성 및 성질)

  • Park, Jong-Ryul;Gu, Su-Jin;Yoon, Doo-Soo;Bang, Moon-Soo;Choi, Jae-Kon
    • Applied Chemistry for Engineering
    • /
    • v.26 no.6
    • /
    • pp.698-705
    • /
    • 2015
  • Two series of symmetric dimesogenic compounds containing a butylene or 1-methylbutylene spacer as a flexible group were synthesized. The mesogenic groups of synthesized compounds consist of an azobenzene group with a terminal substituent. Chemical structures as well as, thermal, mesomorphic, and photochemical properties of the synthesized compounds were investigated using FT-IR, $^1H-NMR$, differential scanning calorimetry (DSC), polarizing optical microscopy (POM), and UV-visible spectrometry. P-H, P-F, and $P-OC_6H_{13}$ showed monotropic liquid crystal phases, whereas the others showed enantiotropic liquid crystal phases. Compounds with butylene group as a flexible spacer exhibited wider mesophase temperature ranges and higher thermal transition temperatures than compounds containing a 1-methylbutylene group. Compounds with a high absolute value of the Hammett substituent constant exhibited high thermal transition temperatures and improved stability in the liquid crystal phase. Furthermore, in the absence or presence of UV light illumination, terminal substituents of the azomesogenic group were important factors in deciding the maximum absorbance wavelength (${\lambda}_{max}$) and the rate of photoisomerization (K).

The Synthesis and Properties of Nonlinear Optical Polyquinonediimine Containing Mono-Azobenzene Group in the Side Chain (곁사슬에 모노-아조벤젠기를 갖는 비선형 광학 폴리퀴논디이민의 합성과 성질에 관한 연구)

  • 이상배;양정성;박동규
    • Polymer(Korea)
    • /
    • v.24 no.6
    • /
    • pp.737-743
    • /
    • 2000
  • Polyquinonediimines (PQDI) which have stable structure on heat and contains mono-azobenzene in the side chain were synthesized by means of condensation polymerization under TiCl$_4$. The synthesized monomers and polymers were identified by FT-IR, $^1$H-NMR, and elementary analysis. Especially, PQDI was comfirmed by the double-bonding peak of >C=N appeared near 1625 $cm^{-1}$ / by means of FT-IR spectrum. PQDI containing mono-azobenzene group in both side chains wat not soluble in non-polar solvents at all but partially soluble in the polar solvents having small dielectric constant, and dissolved in the strong acid such as sulfuric acid and $CH_3$SO$_3$H. Molecular weight distribution of PQDI measured by GPC showed 1.74. It was confirmed through X-ray diffraction analysis that the polymer was partially crystalline at the low angle region, but amorphous after heat treatment at 1$25^{\circ}C$. The glass transition temperature (T$_{g}$ ) of synthesized polymer was measured as 1$25^{\circ}C$ by differential scanning calorimetry. The SHG value for $\chi$$^{(2)}$ after poling at 1$25^{\circ}C$ was 8.6 pm/V (λ=1.542 ${\mu}{\textrm}{m}$). The SHG value slowly decreased with time from the start but appeared temporal stability after 100 hours.

  • PDF

Thermotropic Liquid Crystalline Behavior of [4-{4'-(Nitrophenylazo)phenoxycarbonyl}]alkanoated Celluloses ([4-{4'-(니트로페닐아조)펜옥시카보닐}]알카노화 셀룰로오스들의 열방성 액정 거동)

  • Jeong, Seung-Yong;Ma, Yung-Dae
    • Polymer(Korea)
    • /
    • v.33 no.1
    • /
    • pp.58-66
    • /
    • 2009
  • The thermotropic liquid crystalline behavior of the homologous series of cellulose tri[4-{4'-(nitrophenylazo) phenoxycarbonyl}] alkanoates (NACEn, n=2$\sim$8, 10, the number of methylene units in the spacer) have been investigated. All of the homologoues formed monotropic nematic phases. The isotropic-nematic transition temperature ($T_{iN}$) decreased when n is increased up to 7, but it became almost constant when n is more than 7. The plot of transition entropy at $T_{iN}$ against n had a sharp negative inflection at n=7. The sharp change at n=7 may be attributed to the difference in arrangement of the side groups. The melting temperature ($T_m$) and associated entropy change at $T_m$, in contrast with $T_{iN}$ and associated entropy change at $T_{iN}$, exhibited a distinct odd-even effect, suggesting that the average shape of the side chains in the crystalline phase is different from that in the nematic phase. The thermal stability and degree of order of the nematic phase observed for NACEn were significantly different from those reported for the homologous series of side-chain and combined type liquid crystal polymers bearing azobenzene or biphenyl units in the side chains. The results were discussed in terms of the differences in the chemical structure, the flexibility of the main chain, the mode of chemical linkage of the side group with the main chain, and the number of the mesogenic units per repeating unit.

Thermotropic Liquid Crystalline Behavoir of Hydroxypropyl Celluloses Containing Cyanoazobenzene and Their Photocrosslinked Films (시아노아조벤젠을 함유한 히드록시프로필 셀룰로오스 및 그 광가교 필름들의 열방성 액정 거동)

  • Kim, Hyo-Gap;Jeong, Seung-Yong;Yang, Si-Yeul;Ma, Yung-Dae
    • Polymer(Korea)
    • /
    • v.36 no.1
    • /
    • pp.76-87
    • /
    • 2012
  • Three kinds of hydroxypropyl cellulose (HPC) derivatives, [6-{4-(4-cyanophenylazo)phenoxy}]hexyloxypropyl celluloses (CAHPCs) with degree of etherification (DET) ranging from 0.4 to 3, fully substituted acrylic acid esters of HPC (HPCA) and CAHPCs (CAHPCAs) were synthesized. The crosslinked HPCA (HPCAG) and CAHPCAs (CAHPCAGs) were also prepared by exposing thermotropic mesophases of HPCA and CAHPCAs to UV light. Both CAHPCs and CAHPCAs with DET ${\leq}$ 1.2, as well as HPC and HPCA, formed enantiotropic cholesteric phases whose optical pitches(${\lambda}_m$'s) increase with temperature, wheras both CAHPCs and CAHPCAs with DET ${\geq}$ 1.4 showed monotropic nematic phases. CAHPCAGs with DET ${\leq}$ 1.2, as well as CAHPCAs with DET ${\leq}$ 1.2, exhibited reflection colors in a wide temperature range. On the other hand, CAHPCAGs with DET ${\geq}$ 1.4, as well as CAHPCAs with DET ${\geq}$ 1.4, showed Schileren textures typical of nematic phase, indicating that the liquid crystalline structure is virtually locked upon photocrosslinking. The isotropization temperatures($T_i$'s) of both CAHPCAs and CAHPCAGs decreased with increasing DET. The $T_i$ of CAHPCAG, however, was higher than that of CAHPCA at the same DET. Moreover, the temperature dependence of ${\lambda}_m$ of CAHPCAGs was much weaker than that of CAHPCAs.

Thermotropic Liquid Crystalline Behavior of Hydroxypropyl Celluloses Bearing Cholesteryl and Nitroazobenzene Groups (콜레스테릴과 니트로아조벤젠 그룹을 지닌 히드록시프로필 셀룰로오스들의 열방성 액정 거동)

  • Jeong, Seung-Yong;Ma, Yung-Dae
    • Polymer(Korea)
    • /
    • v.32 no.5
    • /
    • pp.446-457
    • /
    • 2008
  • Three kinds of hydroxypropyl cellulose (HPC) derivatives: 6- (cholesteryloxycarbonyl) pentoxypropyl celluloses(CHPCs) with degree of esterification(DE) ranging from 0.6 to 3, 6-[4-{4'-(nitrophenylazo)phenoxycarbonyl}] pentoxypropyl celluloses (NHPCs) with DE ranging from 0.4 to 3, and fully 6-(cholesteryloxycarbonyl) pentanoated NHPCs (CNHPCs) were synthesized, and their thermotropic liquid crystalline properties were investigated. All the CHPCs and NHPCs with $DE{\leq}1.7$ formed enantiotropic cholesteric phases, whereas CNHPCs with 6-(cholesteryloxycarbonyl) pentanoyl DE(DEC) more than 1.6 exhibited monotropic cholesteric phases. On the other hand, NHPCs with $DE{\geq}2.4$ and CNHPCs with $DEC{\leq}1.3$ showed monotropic nematic phases. NHPCs with $DE{\leq}l$, as well as HPC, formed right-handed helices whose optical pitches (${{\lambda}_m}'s$) increase with temperature, while all the CHPCs formed left-handed helices whose ${{\lambda}_m}'s$ decrease with temperature. In contrast with these derivatives, NHPCs with $1.4{\leq}DE{\leq}1.7$ and CNHPCs with $DEC{\geq}1.6$ did not display reflection colors over the full cholesteric range, suggesting that the helical twisting power of the cellulose chain and the cholesteryl group highly depends on the chemical structure and DE of mesogenic group.

Thermotropic Liquid Crystalline Behavior of Poly[1-{4-(4'-nitrophenylazo)phenoxycarbonylalkanoyloxy}ethylene]s (폴리[1-{4-(4'-니트로페닐아조)페녹시카보닐알카노일옥시}에틸렌]들의 열방성 액정 거동)

  • Jeong, Seung-Yong;Ma, Yung-Dae
    • Polymer(Korea)
    • /
    • v.32 no.5
    • /
    • pp.489-496
    • /
    • 2008
  • The thermotropic liquid crystalline behavior of a homologous series of poly[1-{4-(4' nitrophenylazo) phenoxycarbonylalkanoyloxy}ethylene]s (NAPEn, n = $2{\sim}8$,10, the number of methylene units in the spacer) have been investigated. All of the homologues formed monotropic nematic phases. The glass transition temperatures decreased with n. This is attributed to a plasticization of the backbone by the side chains. The isotropic-nematic phase transition temperatures decreased with increasing n up to 7 and showed the odd-even effect. However it became almost constant when n is more than 7. This behavior was rationalized in terms of the change in the average shape of the side chain on varing the parity of the spacer. This rationalization also accounts for the observed variation of the entropic gain for the clearing transition. The mesophase properties of NAPEn were entirely different from those reported for the polymers in which the azobenzene groups are attached to polyacrylate, polymathacrylate, and polystyrene backbones through polymethylene spacers. The results indicate that the mode of chemical linkage of the side group with the main chain plays an important role in the formation, stabilization, and type of mesophase.

Synthesis and Characterization of Reactive Liquid Crystalline Compounds with Azo-mesogenic Groups at the 4-, 3,5-, or 3,4,5-Positions of Phenyl Ring (페닐고리의 4-, 3,5-, 또는 3,4,5-위치에 아조-메소젠기를 갖는 반응성 액정화합물의 합성 및 특성)

  • Park, Jong-Ryul;Yoon, Doo-Soo;Bang, Moon-Soo
    • Applied Chemistry for Engineering
    • /
    • v.30 no.2
    • /
    • pp.247-253
    • /
    • 2019
  • In this study, compounds with azo-mesogenic groups at 4-, 3,5-, or 3,4,5-positions of one phenyl ring were synthesized, and their liquid crystallinity and photochemistry were investigated. The compounds in the Azo1 and Azo2 series had linear and planar geometries, respectively, while those in the Azo3 series had relatively bulky structures. Compounds of BA-Azo2 and BA-Azo3 did not show any liquid crystallinity. Compounds of BE-Azo1 and BE-Azo2 exhibited a monotropic liquid crystallinity, while the other compounds showed an enantiotropic liquid crystallinity. The liquid crystalline behavior was imparted by the azo-mesogenic groups, and most of the liquid crystalline compounds formed a smectic phase. All the RM-AzoX compounds exhibited photoisomerism because of the presence of the azo groups in the molecule. The rate of photoisomerization followed the order of RM-Azo3 < RM-Azo1 < RM-Azo2 and was considered to depend on the steric hindrance around the azobenzene groups in the molecule. These results suggest that the liquid crystallinity and photochemical property of the compounds are affected by the position or the number of azo-mesogenic groups phenyl ring of the molecule.