• 제목/요약/키워드: 아임계, 초임계

검색결과 23건 처리시간 0.022초

에틸 아세토아세테이트 토토머리즘 평형 상수의 밀도 의존성 (The Effect of Solvent Density on the Ethyl Acetoaceate Tautomerism)

  • 박윤국
    • 공업화학
    • /
    • 제17권3호
    • /
    • pp.291-295
    • /
    • 2006
  • 본 연구에서는 아임계 및 초임계 이산화탄소하의 에틸 아세토아세테이트의 케토-에놀 토토머릭 평형상수를 후리에 적외선 분광기를 이용하여 세 가지 다른 온도에서 측정하였다. 케토-에놀 토토머릭 평형상수의 용매에 대한 밀도 의존성을 연구하기 위하여 정온하에서 이산화탄소의 압력을 변화시켰다. 용매인 이산화탄소의 밀도를 증가 시키면, 케토 토토머의 양이 증가하게 되어 케토-에놀 토토머릭 평형상수값이 감소한다. 에틸 아세토아세테이트의 케토-에놀 토토머릭 평형상수의 밀도의존성을 연구하기 위하여 변형된 격자유체수소결합 모델을 적용하였다.

통상 및 미소 중력의 초임계 압력하에서 일차원 액적 배열의 화염 퍼짐 거동의 비교 연구 (Comparative Study of Flame Spread Behaviors in One Dimensional Droplet Array Under Supercritical Pressures of Normal Gravity and Microgravity)

  • 박정;신현동;코바야시 히데아키;니오카 다카시
    • 대한기계학회논문집B
    • /
    • 제23권1호
    • /
    • pp.140-148
    • /
    • 1999
  • Experiments on flame spread in an one-dimensional droplet array up to supercritical pressures of fuel droplet have been conducted In normal gravity and microgravity. Evaporating process around unburnt droplet is observed through high-speed Schlieren and direct visualizations in detail, and flame spread rate is measured using high speed chemiluminescence images of OH radical. Flame spread behaviors are categorized into three: flame spread is continuous at low pressures and is regularly intermittent up to the critical pressure of fuel. flame spread is irregularly intermittent and zig-zag at supercritical pressures of fuel. At atmospheric pressure, the limit droplet spacing and the droplet spacing of maximum flame spread rate in microgravity are larger than those in normal gravity. In microgravity, the flame spread rate with the increase of ambient pressure decreases initially, takes a minimum, and then decreases after taking maximum. This is so because the flame spread time is determined by competing effects between the increased transfer time of thermal boundary layer due to reduced flame diameter and the reduced ignition delay time in terms of the increase of ambient pressure. Consequently, it is found that flame spread behaviors in microgravity are considerably different from those in normal gravity due to the absence of natural convection.

일차원 액적 배열하에서 화염 퍼짐에 관한 실험적 연구 (An Experimental Study on Flame Spread in an One-Dimensional Droplet Array)

  • 박정;신현동;코바야시 히데아키;니오카 다카시
    • 대한기계학회논문집B
    • /
    • 제23권1호
    • /
    • pp.131-139
    • /
    • 1999
  • Experimental investigations on flame spread in droplet arrays have been conducted under supercritical ambient pressures of fuel droplet. Flame spread rates are measured for n-Decane droplet of diameters of 0.75 and 1.0mm, using high speed images of OH chemiluminescence up to 3.0MPa. The pattern of flame spread is categorized into two: a continuous mode and an intermittent one. There exists a limit droplet spacing, above which flame spread does not occur. Flame spread rate with the decrease of droplet spacing increases and then decreases after takin& a maximum. It is also seen that there exists a limit ambient pressure, above which flame spread does not occur. Flame spread rate decreases monotonically with the increase of ambient pressure. Exceptionally, In the case of a small droplet spacing, flame spread with the increase of ambient pressure is extended to supercritical pressures of fuel droplet. This is caused by enhanced vaporization with the increase of ambient pressure. Consequently, in flame spread with droplet droplet spacing, the relative position of flame to droplet spacing plays an important role. The monotonic decrease with ambient pressure is mainly related to the reduction of flame radius in subcritical pressures and the extension to supercritical pressures of flame spread is caused by the reduction of ignition time of unburnt droplet due to the enhanced vaporization at supercritical pressures.