• Title/Summary/Keyword: 아연공기전지

Search Result 37, Processing Time 0.034 seconds

Development of Zinc Air Battery for Cellular Phone (휴대전화기용 아연공기전지 개발)

  • Eom, Seung-Wook;Kim, Jee-Hoon;Moon, Seong-In;Yun, Mun-Soo;Kim, Ju-Yong;Park, Jeong-Sik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.1083-1088
    • /
    • 2004
  • Zinc air batteries obtain their energy density advantage over the other batteries by utilizing ambient oxygen as the cathode materials, and reusing cathode as recycled form. And specific capacity of zinc powder is as high as 820mAh/g. Our research team succeeded in producing 2.4 Ah class zinc air battery for cellular phone application. In this paper we had studied performance of cathode according to various factors and demonstrated the performance of 2.4 Ah class zinc air battery for cellular phone application.

  • PDF

Effect of Electrolyte-Additives on the Performance of Al-Air Cells (전해질 첨가제가 알루미늄-공기전지의 성능에 미치는 영향)

  • Park, Gwun Pil;Chun, Hai Soo
    • Applied Chemistry for Engineering
    • /
    • v.9 no.1
    • /
    • pp.52-57
    • /
    • 1998
  • The effects of additives such as zinc compounds in 4M KOH electrolyte of Al-air cell have been studied. Zinc compounds in electrolyte increased hydrogen evolution overpotential and TPC(tripotasium citrate)/CaO formed fine film on aluminum surface, and these additives decreased hydrogen evolution rate and corrosion rate of aluminum. These additives shifted the OCP in the positive direction on high purity aluminum(purity, 99.999%) and in the negative direction on Al No 1050(purity,99.5%). Addition of two or more additives resulted in the prevention or the reduction of corrosion rate and hydrogen evolution at OCP. As the overpotential on Al electrode increased, the hydrogen evolution rate decreased and the utilization of aluminum increased. At high current density$(>100mA/cm^2)$, TPC/CaO/ZnO additives increased the utilization of high purity aluminum up to that of aluminum alloys containing indium, gallium and thallium.

  • PDF

Trend on the Recycling Technologies for Spent Batteries by the Patent and Paper Analysis (특허(特許)와 논문(論文)으로 본 폐전지 재활용(再活用) 기술(技術) 동향(動向))

  • Shin, Shun-Myung;Joo, Sung-Ho;Kim, Soo-Kyung;Cho, Young-Ju;Cho, Bong-Gyoo
    • Resources Recycling
    • /
    • v.21 no.4
    • /
    • pp.16-25
    • /
    • 2012
  • There are several kinds of batteries such as zinc-air battery, lithium battery, Manganese dry battery, silver oxide battery, sodium-sulphur battery, lead acid battery, metal hydride secondary battery, nickel-cadmium battery, lithium ion battery, alkaline battery, etc. These days it has been widely studied for the recycling technologies of the used battery from view points of economy and efficiency. In this paper, patents and published papers on the recycling technologies of the used battery were analyzed. The range of search was limited in the open patents of USA (US), European Union (EU), Japan (JP), Korea (KR) and SCI journal articles from 1972 to 2011. Patents and journal articles were collected using key-words searching and filtered by filtering criteria. The trends of the patents and journal articles were analyzed by the years, countries, companies, and technologies.

Size Effects of the Catalyst on Characteristics of Zn/Air Batteries ($MnO_2$입자 크기에 따른 아연공기전지의 특성연구)

  • Kim, Jee-Hoon;Eom, Seung-Wook;Moon, Seong-In;Yun, Mun-Soo;Kim, Ju-Yong;Yug, Gyeong-Chang;Park, Jeong-Hoo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.1129-1131
    • /
    • 2002
  • Zinc Air battery obtain their energy density advantage over the other batteries by utilizing ambient oxygen as the cathode materials, and reusing cathode as recycled form. And specific capacity of zinc powder is as high as 820mAh/g. When Zinc Air battery discharged by low rate current discharge voltage profile has very flat pattern until end of voltage. But, when Zinc Air battery discharged by high rate current discharge voltage and capacity become lower. Therefore, we focused on effects of catalyst size in cathode. So we examined performance of zinc air batteries, average discharge voltage, capacity, energy, resistance. And we also obtained resistance by the GSM pulse discharge. So we have got optimum size of catalyst for Zinc Air battery.

  • PDF

Development of Zinc Air Battery for Cellular Phone (휴대전화기용 아연공기전지 개발)

  • 엄승욱;김지훈;문성인;윤문수;김주용;박정식
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.9
    • /
    • pp.936-941
    • /
    • 2004
  • In recent years, the rapid growth of portable electronic devices requires the high-energy density characteristics of batteries. Zinc air batteries have specific capacity as high as 820mAh/g. However, Zinc air batteries used for hearing aid applications only so far, because the atmosphere could affect it, and it has weakness in the rate capability. However, recent developments of electrode manufacturing technologies made us to overcome that weakness. And the efforts of applying zinc air batteries to portable electronic devices, especially in cellular phone application have been increased. In this paper, the effects of conducting material and polymer binder in cathode on the electrochemical characteristics were investigated. Our research team succeeded in producing 2.4Ah class zinc air battery for cellular phone application. Its volumetric energy density was 920 wh/l, and gravimetric energy density was 308 wh/kg. The volumetric energy density of our zinc air battery is two times higher than one of lithium secondary battery, and three times higher than that of alkaline manganese battery.

Preparation and Electrochemical Properties of Pr1-x (Sr, Ca)xCoO3 Cathode Materials for Zinc Air Batteries (아연공기전지용 Pr1-x (Sr, Ca)xCoO3 양극촉매 제조 및 전기화학적 특성)

  • Heo, Sang-Hun;Eom, Seung-Wook;Kim, Hyun-Soo
    • Journal of the Korean Electrochemical Society
    • /
    • v.12 no.4
    • /
    • pp.342-348
    • /
    • 2009
  • Zn/Air secondary batteries are high energy density type and environment-friendly. Also, they have safer properties than batteries of other type by low manufacturing cost and using the electrolyte solution. But, they have a weak concerning large output discharge. Oxygen evolution reaction(OER) and oxgen reduction reaction(ORR) in aqueous solution make a result of a decrease of cell efficiency and life span. Therefore, to minimize the voltage drop from between OCV and charge/discharge voltage is key point. The problem should be solved through developing catalysts of high efficiency. In this study, we synthesized $Pr_{1-x}(Sr,\;Ca)_x\;CoO_3$ powders by citric method and then measured physical characteristics of each powder by XRD, SEM, TGA etc. We examined its electrochemical properties by the cathodic polarization, anodic polarization and cyclic voltammogram. We achieved results that new catalysts showed better performances than existing $La_{1-x}Sr_xCoO_3$, $La_{1-x}Ca_xCoO_3$, ect. catalysts prepared in our lab.

Trend on the Recycling Technologies for the used Lithium Battery by the Patent Analysis (특허(特許)로 본 폐리튬전지 재활용(再活用) 기술(技術) 동향(動向))

  • Sohn, Jeong-Soo;Shin, Shun-Myung;Kang, Kyung-Seok;Choi, Mi-Jeong
    • Resources Recycling
    • /
    • v.16 no.3 s.77
    • /
    • pp.50-60
    • /
    • 2007
  • There are several kinds of battery such as zinc-air battery, lithium battery, Manganese dry battery, silver oxide battery, mercury battery, sodium-sulphur battery, lead battery, nickel-hydrogen secondary battery, nickel-cadmium battery, lithium ion battery, alkaline battery, etc. These days it has been widely studied for the recycling technologies of the used battery from view points of economy and efficiency. In this paper, patents on the recycling technologies of the used lithium battery were analyzed. The range of search was limited in the open patents of USA(US), European Union(EP), Japan(JP), and Korea(KR) from 1986 to 2006. Patents were collected using key-words searching and filtered by filtering criteria. The trends of the patents was analyzed by the years, countries, companies, and technologies.

Trend on the Recycling Technologies for the used Manganese Dry Battery by the Patent Analysis (특허(特許)로 본 폐망간전지 재활용(再活用) 기술(技術) 동향(動向))

  • Shon, Jeong-Soo;Kang, Kyung-Seok;Han, Hye-Jung;Kim, Tae-Hyun;Shin, Shun-Myung
    • Resources Recycling
    • /
    • v.17 no.2
    • /
    • pp.76-84
    • /
    • 2008
  • There are several kinds of battery such as zinc-air battery, lithium battery, manganese dry battery, silver oxide battery, mercury battery, sodium-sulphur battery, lead battery, nickel-hydrogen secondary battery, nickel-cadmium battery, lithium ion battery and alkaline battery, etc. These days it has been widely studied for the recycling technologies of the used battery from view points of economy and efficiency. In this paper, patents on the recycling technologies of the used manganese dry battery were analyzed. The range of search was limited in the open patents of USA (US), European Union (EP), Japan (JP), and Korea (KR) from 1986 to 2006. Patents were collected using key-words searching and filtered by filtering criteria. The trends of the patents were analyzed by the years, countries, companies, and technologies.

Electrochemical Properties of Gel Polymer Electrolyte including Zinc Acetate Dihydrate for Zinc-Air Batteries (아연-공기 전지용 아세트산 아연 이수화물을 첨가한 고분자 전해질의 전기화학적 특성)

  • Hui Seo Kim;Dong Yun Lee;Yong Nam Jo
    • Korean Journal of Materials Research
    • /
    • v.33 no.12
    • /
    • pp.550-557
    • /
    • 2023
  • In zinc-air batteries, the gel polymer electrolyte (GPE) is an important factor for improving performance. The rigid physical properties of polyvinyl alcohol reduce ionic conductivity, which degrades the performance of the batteries. Zinc acetate is an effective additive that can increase ionic conductivity by weakening the bonding structure of polyvinyl alcohol. In this study, polymer electrolytes were prepared by mixing polyvinyl alcohol and zinc acetate dihydride. The material properties of the prepared polymer electrolytes were analyzed by Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). Also, Electrochemical impedance spectroscopy was used to calculate ionic conductivity. The electrolyte resistances of GPE, 0.2 GPE, 0.4 GPE, and 0.6 GPE were 0.394, 0.338, 0.290, and 0.213 Ω, respectively. In addition, 0.6 GPE delivered 0.023 S/cm high ionic conductivity. Among all of the polymer electrolytes tested, 0.6 GPE showed enhanced cycle life performance and the highest specific discharge capacity of 11.73 mAh/cm2 at 10 mA. These results verified that 0.6 GPE improves the performance of zinc-air batteries.