• Title/Summary/Keyword: 아레니우스 법칙

Search Result 5, Processing Time 0.016 seconds

Fracture Mechanics Applied to Fatigue Crack Growth Behavior at Elevated Temperatures (고온 피로균열 성장거동에 관한 파괴역학의 응용에 관한 연구)

  • 서창민;김영호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.6
    • /
    • pp.1552-1560
    • /
    • 1990
  • A general form of the mathematical function in the fatigue crack growth rate law for CT specimens was determined by means of the dimensional analysis at elevated temperatures. The experimental results can be rigorously described by the combination of rate theory and fracture mechanics. The rate theory approach extends the scope of fracture mechanics through the consideration of the temperature. The fatigue crack growth rates are represented by the Arrhenius type equation. This equation explains fairly well the experimental data for Cr-Mo-V rotor steel and A517-F steel in the comparatively wide temperature regions as affected with the temperature and the stress intensity factor range interaction.

Life-Time Prediction of HNBR Diaphragm in Oil Reservoir (유압구동장치 동력원용 고무 다이아프램 저유기의 수명 예측 연구)

  • Kim, Sol A
    • Journal of Drive and Control
    • /
    • v.18 no.2
    • /
    • pp.32-37
    • /
    • 2021
  • The piston reservoir is mainly used in hydraulic blow-down system for aerospace engineering. The reservoir is heavy due to both hydraulic cylinder and piston in pressurization. The positive expulsion tank with rubber diaphragm has been mostly applied propellant and fuel tank at low pressure to satellites. To reduce weight, the reservoir that can be used at high pressure with rubber diaphragm was developed. In this research, the prediction of life-time for the rubber diaphragm was implemented through an accelerated life test, as a part of development of new reservoir. Also, the diaphragm was stored in an temperature chamber at the same condition as and operation with hydraulic oil. As a result, the life-time for a rubber diaphragm was successfully evaluated via Arrhenius law and Time-Temperature Superposition based on failure times over temperatures in the accelerated test.

Rheological Properties of Gelatinized Dilute Rice Starch Solutions (쌀전분 희석 호화액의 유동학적 특성)

  • Kim, Young-Sug;Kim, Ju-Bong;Lee, Shin-Young;Pyun, Yu-Ryang
    • Korean Journal of Food Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.11-16
    • /
    • 1984
  • Rheological properties of waxy and non-waxy rice starch solutions were evaluated with a narrow gap rotational and Cannon Fenske viscometers. The gelatinized rice starch solutions containing 0.2-1.0% starch displayed pseudoplastic flow behavior. At higher starch level, degree of pseudoplasticity of waxy rice starch solutions increased, while that of non-waxy rice did not changed apparently. The consistency coefficient (K) of non-waxy rice starch solutions increased with increasing gelatinization temperature, but waxy rice starch solutions remained constant, and in alkaline aqueous solutions both of them showed increasing K values. The value of K increased exponentially with an increase in concentration. The effect of the temperature on the viscosity of the solutions followed Arrhenius' type equation, and the activation energies were in the range of 3.675-3.775 kcal/g-mol that were near to that of pure water. The changes of reduced viscosity with concentration were followed Huggin's equation and the values of intrinsic viscosity and interaction coefficient were 0.78-1.59 dl/g and 0.67-2.75, respectively.

  • PDF

Effect of Energy Barrier Distribution on Current-Induced Magnetization Switching with Short Current Pulses (짧은 전류 펄스를 이용한 전류 유도 자화 반전에서 에너지 장벽 분포의 효과)

  • Kim, Woo-Yeong;Lee, Kyung-Jin
    • Journal of the Korean Magnetics Society
    • /
    • v.21 no.2
    • /
    • pp.48-51
    • /
    • 2011
  • We performed macro-spin simulation studies of the current-induced magnetization reversal of nanomagnetic elements with short current pulses. A special attention was paid to the effect of the energy barrier on the switching current distribution. The switching current and its distribution increase with decreasing the current pulse-width. The relationship between the energy barrier and switching current distribution is described by the Arrhenius-N$\'{e}$el law at a long pulse-width regime. At a regime of short pulse-width, however, the relationship is left unaddressed. The difficulty to address this issue arises because the magnetization switching with a short current pulse is governed not by the thermal activation but by the precession motion. Therefore, an exact formulation for the short pulse regime by solving the Fokker-Plank equation is needed to understand the result.

Rheological Properties of Gelatinized Millet Starch Dispersions (국내산 조전분 호화액의 유동특성)

  • Kim, Nam-Soo;Nam, Young-Jung
    • Korean Journal of Food Science and Technology
    • /
    • v.21 no.6
    • /
    • pp.742-748
    • /
    • 1989
  • Rheological properties of gelatinized millet starch dispersions were evaluated. Gelatinized nonwaxy and waxy millet starch dispersion were typical pseudoplastic fluids. At constant shear rate, gelatinized waxy millet starch dispersion showed higher shear stress than nonwaxy millet starch dispersion. Flow behaviours of gelatinized nonwaxy and waxy millet starch dispersion were well fitted to Herschel-Bulkley equation and flow behaviour index (n) and consistency index (K) were strongly concentration dependent. There was a linear relationship between concentration of gelatinized starch dispersion and square root of yield stress. The concentrations of gelatinized nonwaxy and waxy millet starch dispersion where yield stresses become zero were estimated as 2.19 and 1.69%, respectively. Pseudoplastic constant (m) approaches to a constant value in each type of millet starch when the concentration of gelatinized starch dispersion was increased. As the measuring temperatures increase, n value was increased, whereas, K value was decreased. The activation energies of gelatinized nonwaxy and waxy millet starch dispersion were 2.89 and 3.18kcal/mol, respectively.

  • PDF