• Title/Summary/Keyword: 심화신경망

Search Result 18, Processing Time 0.038 seconds

A Study on Deep Neural Network based Speech Enhancement (심화 신경망 기반의 음성 향상 기법에 관한 연구)

  • Lee, Moa;Chang, Joon-Hyuk
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2018.05a
    • /
    • pp.342-343
    • /
    • 2018
  • 본 논문에서는, 적층형 심화 신경망 회귀 모델을 도입하여 잡음이 포함된 입력 신호의 특징벡터로부터 깨끗한 입력 신호의 특징벡터를 추정함으로써 음성 향상 성능을 개선 시켰다. 제안된 방법은 기존의 단일 심화신경망 기법 보다 음성인식 성능 향상에 더욱 효과가 있었다.

Speech enhancement based on reinforcement learning (강화학습 기반의 음성향상기법)

  • Park, Tae-Jun;Chang, Joon-Hyuk
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2018.05a
    • /
    • pp.335-337
    • /
    • 2018
  • 음성향상기법은 음성에 포함된 잡음이나 잔향을 제거하는 기술로써 마이크로폰으로 입력된 음성신호는 잡음이나 잔향에 의해 왜곡되어지므로 음성인식, 음성통신 등의 음성신호처리 기술의 핵심 기술이다. 이전에는 음성신호와 잡음신호 사이의 통계적 정보를 이용하는 통계모델 기반의 음성향상기법이 주로 사용되었으나 통계 모델 기반의 음성향상기술은 정상 잡음 환경과는 달리 비정상 잡음 환경에서 성능이 크게 저하되는 문제점을 가지고 있었다. 최근 머신러닝 기법인 심화신경망 (DNN, deep neural network)이 도입되어 음성 향상 기법에서 우수한 성능을 내고 있다. 심화신경망을 이용한 음성 향상 기법은 다수의 은닉 층과 은닉 노드들을 통하여 잡음이 존재하는 음성 신호와 잡음이 존재하지 않는 깨끗한 음성 신호 사이의 비선형적인 관계를 잘 모델링하였다. 이러한 심화신경망 기반의 음성향상기법을 향상 시킬 수 있는 방법 중 하나인 강화학습을 적용하여 기존 심화신경망 대비 성능을 향상시켰다. 강화학습이란 대표적으로 구글의 알파고에 적용된 기술로써 특정 state에서 최고의 reward를 받기 위해 어떠한 policy를 통한 action을 취해서 다음 state로 나아갈지를 매우 많은 경우에 대해 학습을 통해 최적의 action을 선택할 수 있도록 학습하는 방법을 말한다. 본 논문에서는 composite measure를 기반으로 reward를 설계하여 기존 PESQ (Perceptual Evaluation of Speech Quality) 기반의 reward를 설계한 기술 대비 음성인식 성능을 높였다.

A study on Gabor Filter Bank-based Feature Extraction Algorithm for Analysis of Acoustic data of Emergency Rescue (응급구조 음향데이터 분석을 위한 Gabor 필터뱅크 기반의 특징추출 알고리즘에 대한 연구)

  • Hwang, Inyoung;Chang, Joon-Hyuk
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2015.10a
    • /
    • pp.1345-1347
    • /
    • 2015
  • 본 논문에서는 응급상황이 신고되는 상황에서 수보자에게 전달되는 신고자의 주변음향신호로부터 신고자의 주변상황을 추정하기 위하여 음향의 주파수적 특성 및 변화특성의 모델링 성능이 뛰어난 Gabor 필터뱅크 기반의 특징벡터 추출 기술 및 분류 성능이 뛰어난 심화신경망을 도입한다. 제안하는 Gabor 필터뱅크 기반의 특징벡터 추출 기법은 비음성 구간 검출기를 통하여 음성/비음성을 구분한 후에 비음성 구간에서 23차의 Mel-filter bank 계수를 추출한 후에 이로부터 Gabor 필터를 이용하여 주변상황 추정을 위한 특징벡터를 추출하고, 이로부터 학습된 심화신경망을 통하여 신고자의 장소적 정보를 추정한다. 제안된 기법은 여러 가지 시나리오 환경에서 평가되었으며, 우수한 분류성능을 보였다.

Deep Learning Based User Scheduling For Multi-User and Multi-Antenna Networks (다중 사용자 다중 안테나 네트워크를 위한 심화 학습기반 사용자 스케쥴링)

  • Ban, Tae-Won;Lee, Woongsup
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.8
    • /
    • pp.975-980
    • /
    • 2019
  • In this paper, we propose a deep learning-based scheduling scheme for user selection in multi-user multi-antenna networks which is considered one of key technologies for the next generation mobile communication systems. We obtained 90,000 data samples from the conventional optimal scheme to train the proposed neural network and verified the trained neural network to check if the trained neural network is over-fitted. Although the proposed neural network-based scheduling algorithm requires considerable complexity and time for training in the initial stage, it does not cause any extra complexity once it has been trained successfully. On the other hand, the conventional optimal scheme continuously requires the same complexity of computations for every scheduling. According to extensive computer-simulations, the proposed deep learning-based scheduling algorithm yields about 88~96% average sum-rates of the conventional scheme for SNRs lower than 10dB, while it can achieve optimal average sum-rates for SNRs higher than 10dB.

Voice inactivity detection for Analysis of Acoustic data of Emergency Rescue (응급구조에서의 음향데이터 분석을 위한 음성 부재구간 검출 기술)

  • Huang, Seng Hyun;Chang, Joon-Hyuk
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2015.10a
    • /
    • pp.1348-1349
    • /
    • 2015
  • 본 논문에서는 응급구조의 신고 상황에서의 수보자의 보다 정확하고 신속한 대응를 위하여 수화자의 음향환경을 분석하여 주변상황에 대한 정보를 알고자 심화 신경망 기반의 음성 부재구간 검출 기법을 제안한다. 제안한 알고리즘은 음성 신호에서의 23차의 Mel-filter bank를 추출하고 이를 심화 신경망 기법을 이용하여 음성 부재구간을 검출한다. 객관적인 성능 평가를 위해 제안된 기법은 실제 응급구조 상황에서 평가되었으며, 기존의 음성검출기를 이용한 음성 부재구간 검출 성능에 비하여 향상된 성능을 보였다.

A Study on EVRC-based Speech Enhancement by Reinforcement Learning (강화학습을 적용한 EVRC 기반의 음성향상기법에 대한 연구)

  • Kim, Sohyeon;Chang, Joon-Hyuk
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2018.05a
    • /
    • pp.340-341
    • /
    • 2018
  • 본 논문에서는 음성인식의 성능을 높이기 위해 잡음을 제거하여 음성을 향상시킬 목적으로 심화신경망 기반의 강화학습을 적용한 음성향상 기법을 제안한다. EVRC를 통해 잡음을 제거한 후 강화학습을 적용하여 성능을 비교하며 기존의 음성향상 기법보다 향상된 성능을 가지는 모델을 구현하고자 한다.

The efficacy of biofeedback in reducing cybersickness in virtual navigation (생체신호 피드백을 적용한 가상주행 환경에서 사이버 멀미 감소 효과)

  • 김영윤;정찬용;김은남;윤정민;서동오;고희동;김현택
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2002.05a
    • /
    • pp.90-94
    • /
    • 2002
  • 이전연구에서 가상현실에 몰입하는 동안 넓은 시야 (Field of view: 150$^{\circ}$)와 빠른 운행속도 (70 km/sec)가 사이버멀미를 심화시킨다는 결과를 얻었다: 피험자의 90%가 좁은 시야 (50$^{\circ}$)와 느린 운행속도 (30 km/sec)에서 사이버멀미 증상이 적었다. 본 실험에서는 피험자가 생리적인 동요를 경험할 때마다 바이오피드백 방법을 사용해서 사이버멀미 감소 가상환경 (cybersickness alleviating virtual environment, CAVE)을 제시한 후, 그 효과를 관찰하였다. 피부전도도, 말초체온, 말초혈류량, 심박률, 눈 깜박임, 뇌전위의 변수들을 입력으로 하는 인공신경망으로 구성된 실시간 멀미 탐지 시스템과 CAVE-제시 피드백 시스템을 구축하였다. 이 시스템은 생리적 측정치들이 사이버멀미의 출현을 신호할 때마다 피드백 출력으로 좁은 화면과 감소된 운행속도를 일시적으로 제공했다. 36명의 피험자를 대상으로 SSQ (simulator sickness questionnaires)와 자기보고를 이용하여 사이버멀미의 빈도와 심각도를 조사하였다. 모든 피험자는 한달 간격으로 CAVE 조건과 non-CAVE 조건에서 두 번 가상현실을 경험하였다. 사이버멀미의 빈도와 심각도는 non-CAVE 조건보다 CAVE 조건에서 유의미하게 감소하였다. 즉, 전기생리학적 특징들에 기반한 인공신경망에 의해 제공된 좁은 시야와 느린 운행의 가상환경은 사이버멀미 증상들을 의미있게 감소시켰다. 이러한 결과들은 생체신호 피드백 시스템을 이용하여 인간 친화적 가상환경을 구축할 수 있는 가능성을 보인 것이다.

  • PDF

Future Inflow Simulation Considering Climate Change in Chungju Dam Basin (기후변화를 고려한 충주댐 유역의 미래 유입량 모의)

  • Park, Ji-Yeon;Shin, Ju-Young;Kim, Tae-Rim;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.125-125
    • /
    • 2012
  • 최근 심화되고 있는 강우의 시간적 지역적 불균형이 기후변화와 높은 연관성이 있다는 연구결과가 발표되고 있다. 강우에 직접적인 영향을 받는 수자원분야에서는 강우의 변동성을 예측한 결과를 바탕으로 기후변화 영향에 대한 연구가 활발히 진행 하고 있다. 우리나라의 연중 강수량의 대부분이 홍수기에 집중되어 수자원의 총량의 27%만 사용하고 있다. 전체 수자원이용량 중 절반 이상을 댐을 통해 이용하고 있기 때문에 댐 운영방법에 지속적인 연구가 필요하다. 기후변화영향으로 댐 유입량에 대한 불확실성이 커지므로 장기적인 수자원을 관리를 위하여 효율적인 댐 운영을 하기 위한 해결책이 필요하다. 물리적 강우-유출 모형으로 기후변화 영향을 받는 장기간 모의를 하게 되면 입력 자료와 매개변수, 모형구조의 불확실성 갖게 된다. 그에 반해 데이터를 통해 모형의 매개변수 값을 추정하여, 향후의 의사결정에 활용할 수 있는 모형을 구축하는 추계학적 모형과 인공신경망모형은, 물리적인 강우-유출 모형과 비교하여 모의에 드는 시간이 적고 모형 불확실성 파악이 가능하며, 장기간 모의 시 불확실성을 줄이는 효율적인 대안이 될 수 있다. 일반적인 추계학적 모형은 과거의 유입량 자료만 사용하지만 본 연구에서는 기후변화 시나리오 강우량의 영향을 함께 고려한 Transfer Function Noise(TFN)모형을 통하여 장기간 모의를 하였다. 본 연구의 대상 댐으로는 한강유역 중 댐 상류유역면적이 제일 넓은 충주댐으로 선정하였다. 과거의 유입량과 강우량 자료를 사용하여 통계적 방법을 통하여 TFN모형을 구축하고, TFN과 같은 변수를 사용하여 인공신경망모형을 구축하였다. 5개의 시나리오별로 어떠한 차이를 갖는지를 비교하였고, TFN모형과 인공신경망에 따라서 어떠한 양상을 갖는지 비교하였다.

  • PDF

The Analysis Telecommunication Service MarKet with Data Mining (통신시장에서 마이터 마이닝 분석)

  • 장일동;위승민
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.10a
    • /
    • pp.1-3
    • /
    • 2001
  • 이 논문에서는 지식발견과 데이터 마이닝에 관한 전반적인 소개와 고객이탈에 관한 것이다. 데이터 마이닝이란 과거에 수집된 데이터로부터 반복적인 학습과정을 거쳐 데이터에 내재되어 있는 패턴을 찾아내는 모델링 기법이며 통신서비스시장에서 데이터 마이닝 활용으로 고객이탈방지 모델을 인공신경망을 통해 구축하였다. 통신서비스시장의 경쟁이 심화됨에 따라 통신서비스 제공 업체가 고통으로 겪는 어려움 중의 하나가 고객이탈률이다. 따라서 데이터베이스에서 보다 가치 있는 정보를 찾아내 고객 이탈고객 분류의 적중률에 관하여 논의하였다.

  • PDF

Ananlyzing Customer Management Data by Datamining (Focused on Apartment Customer Classification) (데이터마이닝을 통한 고객관리데이터의 분석 (아파트고객 세분화를 중심으로))

  • Baek, Shin Jung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2004.05a
    • /
    • pp.69-72
    • /
    • 2004
  • 기업간의 경쟁이 심화되고 정보의 중요성에 대한 인식이 확대되어 가는 상황에서 다량의 데이터로부터 가치 있는 데이터를 추출하는 CRM 데이터 마이닝은 중대한 관심사가 아닐 수 없다. 본 연구는 데이터마이닝의 여러 활용 분야 중 고객세분화를 위해 최근 많이 사용되고 있는 데이터마이닝 기법인 로지스틱 회귀분석, 의사결정나무, 신경망 알고리즘 기법들을 비교하며, 이를 실제 아파트 고객의 데이터를 이용하여 검증하고자 한다. 따라서, 아파트 고객 세분화를 위한 데이터마이닝 수행시 기법 선택의 기준과 비교 평가의 기준을 제시하는 데 연구목적 있다.

  • PDF