• Title/Summary/Keyword: 심해저 집광 시스템

Search Result 6, Processing Time 0.019 seconds

Development of Operating S/W and DBMS for Deep-sea Manganese Nodule Miner (심해저 망간단괴 집광기의 운영 소프트웨어 및 데이터베이스 관리시스템 개발)

  • Park, Soung-Jae;Yeu, Tae-Kyeong;Yoon, Suk-Min;Hong, Sup;Kim, Hyung-Woo;Choi, Jong-Su;Kim, Sang-Bong
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.13 no.3
    • /
    • pp.229-236
    • /
    • 2008
  • The deep-sea miner is the tracked vehicle system which drives on the deep-seabed and gathers a manganese nodules. The miner is operated by remote control in real-time by the station of surface vessel. So operating S/W is a important part of miner remote operating. At present, the test miner has been designed and manufactured for near-shore sea-test. The test miner consists of mechanical parts, and electric-electronic parts. Because those parts should be controled and monitored remotely, operating S/W for control and monitoring is necessary by all means. In this paper, real-time operating S/W for a control and monitoring of the test miner was designed and developed using PXI, embedded controller and LabVIEW. This real-time operating S/W was developed for an efficient test of test miner in a near seabed area. Moreover, database management system(DBMS) was developed too for the data management of test miner monitoring using MS SQL and LabVIEW.

Applying Axiomatic Design to Design Evaluation of a Deep-Sea Manganese Nodule Miner (공리적 설계를 적용한 심해저 망간단괴 집광시스템의 설계평가)

  • Choi, Jong-Su;Hong, Sup;Kim, Hyung-Woo;Yeu, Tae-Kyung;Lee, Tae-Hee
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.13 no.3
    • /
    • pp.246-251
    • /
    • 2008
  • The conceptual design evaluation of Deep-Sea Manganese Nodule Miner(DSNM) based on Axiomatic Design was preformed. Functional Requirements(FRs) in functional domain and Design Parameters(DPs) in physical domain were embodied for the given concept design of DSNM. Interactions between FRs and DPs were sequentially analyzed from the first level hierarchy to the lower level hierarchy. The interactions were expressed as design matrices which showed the dependence or independence between FRs and DPs. The results showed that the design of DSNM was not a coupled one, but a decoupled. Finally, it was conceptually verified that DSNM was a good design satisfying the independence axiom of the Axiomatic Design.

Application Study on FMEA(Failure Mode and Effect Analysis) for Waterjet-lifter of Deep-Sea Manganese Nodule Miner (심해저 망간단괴 집광시스템의 물제트부양장치에 대한 FMEA 적용 연구)

  • Choi, Jong-Su;Hong, Sup;Lee, Tae-Hee;Kim, Hyung-Woo;Yeu, Tae-Kyeong
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.6
    • /
    • pp.32-38
    • /
    • 2009
  • An FMEA for the waterjet-lifter of a DSNM is performed to prevent the occurrence of device failure. A waterjet-lifter raises and transports manganese nodules from the deep-sea floor up to a somewhat elevated place, from which a pin-scraper transports the lifted nodules to the inner space of the DSNM. A concept design for a device using the axiomatic design methodology is shown as the mapping between the functional domain and physical domain. The FMEA for a DSNM is introduced briefly and the rating criteria of severity, occurrence, and detection for the DSNM are defined. The FMEA of the functional requirements of a DSNM device is accomplished. Three kinds of failure modes, as well as their effects and causes, are predicted. Current design control methods for detecting potential failures, such as physical or computational experiments, design confirmation, and mathematical calculation, are described and the recommended actions for several significant causes are suggested.

Design of a Decentralized Controller for Deep-sea Mining System (심해저 채광시스템에 대한 분산제어기 설계에 관한 연구)

  • Yeu, Tae-Kyeong;Park, Soung-Jea;Hong, Sup;Kim, Hyung-Woo;Choi, Jong-Su
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.13 no.3
    • /
    • pp.252-259
    • /
    • 2008
  • The deep-sea mining system is generally composed of surface vessel, lifting system, buffer, flexible pipe and miner. The mining system can be regarded as a large-scale system in which each subsystem is interconnected to other ones. In order to control a large-scale system, decentralized control approaches have been proposed recently. In this paper, as a basic study on application of decentralized control, firstly, the mining system was modeled in a simplified way. Lifting system and buffer were regarded as a spherical pendulum and the flexible pipe was taken as a two-dimensional linear spring connection. Based on the simplified model dynamics, the mining system can be decentralized two subsystems, the one consisting of surface vessel, lifting system and buffer, and the other, the miner. Next, this paper proposed the design of controller for each decentralized subsystem by regarding the interacting terms as disturbances. The controllers kept the constant distance between two subsystems during the miner was moving on the specified track. Finally, the efficiency of proposed controller was proven through the numerical simulation of the derived model.

Experimental Study of Solid-water Slurry Flow in Vertical Pipe (수직관내 고-액 슬러리 유동 계측 실험연구)

  • Choi, Jong-Su;Hong, Sup;Yang, Chan-Kyu
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.160-163
    • /
    • 2001
  • In order to develop a nodule conveying system through a flexible pipe out of the deep-seabed manganese nodule miner, an experimental study of the solid-water slurry flow in vertical pipe is performed as the first stage of total experiments. Hydraulic characteristics of the pipe slurry flow such as slip velocity, transport concentration and pressure gradient are investigated for the size of particle, load ratio, and flow rate of water. The higher the load ratio is, the larger the transport concentration and pressure gradient become. The bigger the size of particles is, the larger the pressure gradient becomes. The effectiveness of the flow rate to hydraulic performance is also investigated. This results are to be used for designing crusher and pump, and operating the conveying device.

  • PDF

Risk-based Design of On-board Facility for Lifting System Field Test of Deep-sea Mining System (심해저 광물자원 양광시스템 실증 시험을 위한 위험도 기반 선상 설비 설계)

  • Cho, Su-gil;Park, Sanghyun;Oh, Jaewon;Min, Cheonhong;Kim, Seongsoon;Kim, Hyung-Woo;Yeu, Tae Kyung;Jung, Jung Yeul;Bae, Jaeil;Hong, Sup
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.6
    • /
    • pp.526-534
    • /
    • 2016
  • This study had the goal of designing onboard structures for a pre-pilot mining test (PPMT), which is required for the commercialization of the deep-sea mining industry. This PPMT is planned to validate the performance of a hydraulic lifting system and verify the concept of operating through a moon-pool in the east sea, Korea. All of the onboard equipment and facility were designed by KRISO. Because the test was performed at the first development, it is difficult to determine what risk will occur in the facility. Therefore, risk-based design is required in the facility for the PPMT, which includes the facility layout, failure mode and effect analysis (FMEA), and risk reduction plan. All of the expected performances of the lifting system itself and the onboard facilities were qualitatively validated using the risk-based design.