Researches on the prediction of domestic apartment sales price have been continuously conducted, but it is not easy to accurately predict apartment prices because various characteristics are compounded. Prior to predicting apartment sales price, the analysis of major factors, influencing on sale prices, is of paramount importance to improve the accuracy of sales price. Therefore, this study aims to analyze what are the factors that affect the apartment sales price in Gwangju, which is currently showing a steady increase rate. With 6 years of Gwangju apartment transaction price and various social factor data, several maching learning techniques such as multiple regression analysis, random forest, and deep artificial neural network algorithms are applied to identify major factors in each model. The performances of each model are compared with RMSE (Root Mean Squared Error), MAE (Mean Absolute Error) and R2 (coefficient of determination). The experiment shows that several factors such as 'contract year', 'applicable area', 'certificate of deposit', 'mortgage rate', 'leading index', 'producer price index', 'coincident composite index' are analyzed as main factors, affecting the sales price.
Shear strength is the most important indicator in the evaluation of rock slope stability. It is generally estimated by comparing the results of existing literature data, back analysis, experiments and etc. There are additional variables related to the state of discontinuity to consider in the shear strength of the rock slope. It is difficult to determine whether these variables exist through drilling, and it is also difficult to find an exact relationship with shear strength. In this study, the data calculated through back analysis were used. The relationship between previously considered variables was applied to deep learning and the possibility for estimating shear strength of rock slope was explored. For comparison, an existing simple linear regression model and a deep learning algorithm, a deep neural network(DNN) model, were used. Although each analysis model derived similar prediction results, the explanatory power of DNN was improved with a small differences.
Deep learning model is a kind of neural networks that allows multiple hidden layers. There are various deep learning architectures such as convolutional neural networks, deep belief networks and recurrent neural networks. Those have been applied to fields like computer vision, automatic speech recognition, natural language processing, audio recognition and bioinformatics where they have been shown to produce state-of-the-art results on various tasks. Among those architectures, convolutional neural networks and recurrent neural networks are classified as the supervised learning model. And in recent years, those supervised learning models have gained more popularity than unsupervised learning models such as deep belief networks, because supervised learning models have shown fashionable applications in such fields mentioned above. Deep learning models can be trained with backpropagation algorithm. Backpropagation is an abbreviation for "backward propagation of errors" and a common method of training artificial neural networks used in conjunction with an optimization method such as gradient descent. The method calculates the gradient of an error function with respect to all the weights in the network. The gradient is fed to the optimization method which in turn uses it to update the weights, in an attempt to minimize the error function. Convolutional neural networks use a special architecture which is particularly well-adapted to classify images. Using this architecture makes convolutional networks fast to train. This, in turn, helps us train deep, muti-layer networks, which are very good at classifying images. These days, deep convolutional networks are used in most neural networks for image recognition. Convolutional neural networks use three basic ideas: local receptive fields, shared weights, and pooling. By local receptive fields, we mean that each neuron in the first(or any) hidden layer will be connected to a small region of the input(or previous layer's) neurons. Shared weights mean that we're going to use the same weights and bias for each of the local receptive field. This means that all the neurons in the hidden layer detect exactly the same feature, just at different locations in the input image. In addition to the convolutional layers just described, convolutional neural networks also contain pooling layers. Pooling layers are usually used immediately after convolutional layers. What the pooling layers do is to simplify the information in the output from the convolutional layer. Recent convolutional network architectures have 10 to 20 hidden layers and billions of connections between units. Training deep learning networks has taken weeks several years ago, but thanks to progress in GPU and algorithm enhancement, training time has reduced to several hours. Neural networks with time-varying behavior are known as recurrent neural networks or RNNs. A recurrent neural network is a class of artificial neural network where connections between units form a directed cycle. This creates an internal state of the network which allows it to exhibit dynamic temporal behavior. Unlike feedforward neural networks, RNNs can use their internal memory to process arbitrary sequences of inputs. Early RNN models turned out to be very difficult to train, harder even than deep feedforward networks. The reason is the unstable gradient problem such as vanishing gradient and exploding gradient. The gradient can get smaller and smaller as it is propagated back through layers. This makes learning in early layers extremely slow. The problem actually gets worse in RNNs, since gradients aren't just propagated backward through layers, they're propagated backward through time. If the network runs for a long time, that can make the gradient extremely unstable and hard to learn from. It has been possible to incorporate an idea known as long short-term memory units (LSTMs) into RNNs. LSTMs make it much easier to get good results when training RNNs, and many recent papers make use of LSTMs or related ideas.
Annual Conference on Human and Language Technology
/
2018.10a
/
pp.532-536
/
2018
심층인공신경망을 이용한 대화 모델링 연구가 활발하게 진행되고 있다. 본 논문에서는 대화에서 발화의 감정과 화행을 분류하기 위해 멀티태스크(multitask) 학습을 이용한 End-to-End 시스템을 제안한다. 우리는 감정과 화행을 동시에 분류하는 시스템을 개발하기 위해 멀티태스크 학습을 수행한다. 또한 불균형 범주 분류를 위해 계단식분류(cascaded classification) 구조를 사용하였다. 일상대화 데이터셋을 사용하여 실험을 수행하였고 macro average precision으로 성능을 측정하여 감정 분류 60.43%, 화행 분류 74.29%를 각각 달성하였다. 이는 baseline 모델 대비 각각 29.00%, 1.54% 향상된 성능이다. 본 논문에서는 제안하는 구조를 이용하여, 발화의 감정 및 화행 분류가 End-to-End 방식으로 모델링 가능함을 보였다. 그리고, 두 분류 문제를 하나의 구조로 적절히 학습하기 위한 방법과 분류 문제에서의 범주 불균형 문제를 해결하기 위한 분류 방법을 제시하였다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2018.11a
/
pp.53-54
/
2018
주어진 영상으로부터의 3 차원 얼굴 모델링은 얼굴 분석, 애니메이션, 생체 인식 등의 많은 컴퓨터비전 및 그래픽스 응용분야에서 중요한 역할을 하고 있다. 그 중에서도 헤어 영역은 얼굴에 비해 모양의 다양성과 모델의 복잡도가 현저히 높다. 기존의 연구는 주로 얼굴 영역에 한정한 3 차원 얼굴 모델링을 중심으로 이루어졌지만 헤어 모델링은 중요하게 다루지 않고 있는 경우가 많다. 본 논문에서는 심층인공신경망의 일종인 FCN (fully connected network)을 이용하여 인물 영상에서 헤어 부분을 영역화하고 그와 가장 유사한 3D 헤어 모델을 데이터베이스에서 검색하여 3 차원 얼굴 모델에 증강함으로써 완전한 얼굴 모델링을 수행하는 방법을 제안한다. 이는 FCN 을 이용하여 다양한 인물 영상에 대하여 네트워크 학습을 수행하는 과정과 3D 헤어 데이터베이스의 구축 과정을 포함한다. 실험 결과 적절한 수준의 헤어 모델이 3 차원 얼굴 모델링 결과물에 증강됨을 확인하였다.
Proceedings of the Korean Society of Computer Information Conference
/
2018.07a
/
pp.119-120
/
2018
본 논문에서는 음악을 듣고 어떤 음악인지 인식하고 판별하는 음원분류 시스템과 해당 기술 구현을 딥러닝을 통해 적용하도록 제안하였다. 제안한 시스템은 인공심층신경망을 통해 음원파일을 여러 음원 특징 추출 모델에 따라 검출된 특징들을 학습하여 해당 음원의 고유한 보컬이나 반주의 특색 등을 찾아내어 이를 인식할 수 있도록 구현하였다. 이를 통해, 기존의 Fingerprint 방식의 데이터베이스 검색 시스템과는 다른 접근방식으로 보다 사람이 음악을 기억하는 방법에 가깝도록 구현하여 능동성과 유연성을 개선하고 다양한 응용분야로 활용할 수 있는 시스템을 제안하였다.
Proceedings of the Korean Institute of Building Construction Conference
/
2022.11a
/
pp.57-58
/
2022
Concrete mix design is used as essential data for the quality of concrete, analysis of structures, and stable use of sustainable structures. However, since most of the formulation design is established based on the experience of experts, there is a lack of data to base it on. are suffering Accordingly, in this study, the purpose of this study is to build a predictive model to use the concrete mixing factor as basic data for calculation using the DNN technique. As for the data set for DNN model learning, OPC and ternary concrete data were collected according to the presence or absence of admixture, respectively, and the model was separated for OPC and ternary concrete, and training was carried out. In addition, by varying the number of hidden layers of the DNN model, the prediction performance was evaluated according to the model structure. The higher the number of hidden layers in the model, the higher the predictive performance for the prediction of the mixing elements except for the compressive strength factor set as the output value, and the ternary concrete model showed higher performance than the OPC. This is expected because the data set used when training the model also affected the training.
The Journal of The Korea Institute of Intelligent Transport Systems
/
v.18
no.4
/
pp.44-57
/
2019
Various studies have been conducted to solve traffic congestions in many metropolitan cities through accurate traffic flow prediction. Most studies are based on the assumption that past traffic patterns repeat in the future. Models based on such an assumption fall short in case irregular traffic patterns abruptly occur. Instead, the approaches such as predicting traffic pattern through big data analytics and artificial intelligence have emerged. Specifically, deep learning algorithms such as RNN have been prevalent for tackling the problems of predicting temporal traffic flow as a time series. However, these algorithms do not perform well in terms of long-term prediction. In this paper, we take into account various external factors that may affect the traffic flows. We model the correlation between the multi-dimensional context information with temporal traffic speed pattern using deep neural networks. Our model trained with the traffic data from TOPIS system by Seoul, Korea can predict traffic speed on a specific date with the accuracy reaching nearly 90%. We expect that the accuracy can be improved further by taking into account additional factors such as accidents and constructions for the prediction.
Journal of the Korea Society of Computer and Information
/
v.27
no.12
/
pp.59-68
/
2022
This paper presents a method for 1:1 verification by comparing the similarity between the given real product image and the drawing image. The proposed method combines two existing CNN-based deep learning models to construct a Siamese Network. After extracting the feature vector of the image through the FC (Fully Connected) Layer of each network and comparing the similarity, if the real product image and the drawing image (front view, left and right side view, top view, etc) are the same product, the similarity is set to 1 for learning and, if it is a different product, the similarity is set to 0. The test (inference) model is a deep learning model that queries the real product image and the drawing image in pairs to determine whether the pair is the same product or not. In the proposed model, through a comparison of the similarity between the real product image and the drawing image, if the similarity is greater than or equal to a threshold value (Threshold: 0.5), it is determined that the product is the same, and if it is less than or equal to, it is determined that the product is a different product. The proposed model showed an accuracy of about 71.8% for a query to a product (positive: positive) with the same drawing as the real product, and an accuracy of about 83.1% for a query to a different product (positive: negative). In the future, we plan to conduct a study to improve the matching accuracy between the real product image and the drawing image by combining the parameter optimization study with the proposed model and adding processes such as data purification.
Byung-Soo Kim;Ju-Sung Choi;Ja-Kyung Lee;Na-Young Jung;Tae-Hyung Kim
Journal of the Korean Geosynthetics Society
/
v.22
no.2
/
pp.1-12
/
2023
Research on the causes of landslides and prediction of vulnerable areas is being conducted globally. This study aims to predict the effective soil depth, a critical element in analyzing and forecasting landslide disasters, using topographic information. Topographic data from various institutions were collected and assigned as attribute information to a 100 m × 100 m grid, which was then reduced through data grading. The study predicted effective soil depth for two cases: three depths (shallow, normal, deep) and five depths (very shallow, shallow, normal, deep, very deep). Three classification models, including K-Nearest Neighbor, Random Forest, and Deep Artificial Neural Network, were used, and their performance was evaluated by calculating accuracy, precision, recall, and F1-score. Results showed that the performance was in the high 50% to early 70% range, with the accuracy of the three classification criteria being about 5% higher than the five criteria. Although the grading criteria and classification model's performance presented in this study are still insufficient, the application of the classification model is possible in predicting the effective soil depth. This study suggests the possibility of predicting more reliable values than the current effective soil depth, which assumes a large area uniformly.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.