• 제목/요약/키워드: 심층신경망 알고리즘

검색결과 87건 처리시간 0.029초

무인항공기 영상 및 딥러닝 기반 객체인식 알고리즘을 활용한 해안표착 폐기물 탐지 기법 연구 (Study on Detection Technique for Coastal Debris by using Unmanned Aerial Vehicle Remote Sensing and Object Detection Algorithm based on Deep Learning)

  • 박수호;김나경;정민지;황도현;엥흐자리갈 운자야;김보람;박미소;윤홍주;서원찬
    • 한국전자통신학회논문지
    • /
    • 제15권6호
    • /
    • pp.1209-1216
    • /
    • 2020
  • 본 연구에서는 무인항공기 원격탐사 기법과 딥러닝 기반 객체인식 알고리즘을 활용한 해안표착폐기물 탐지기법을 제안한다. 항공영상 내에 존재하는 해안표착폐기물을 탐지하기 위해 심층신경망 기반 객체 인식 알고리즘을 제안하였다. PET, 스티로폼, 기타 플라스틱의 3가지 클래스의 이미지 데이터셋으로 심층신경망 모델을 훈련시켰으며, 각 클래스별 탐지 정확도를 Darknet-53과 비교하였다. 이를 통해 해안표착 폐기물을 무인항공기를 통해 성상별 모니터링할 수 있었으며, 향후 본 연구에서 제안하는 방법이 적용될 경우 해변 전체에 대한 성상별 전수조사가 가능하며, 이를 통해 해양환경 감시 분야의 효율성 증대에 기여할 수 있을 것으로 판단된다.

Short-time Fourier transform 소음맵을 이용한 컨볼루션 기반 BSR (Buzz, Squeak, Rattle) 소음 분류 (BSR (Buzz, Squeak, Rattle) noise classification based on convolutional neural network with short-time Fourier transform noise-map)

  • 부석준;문세민;조성배
    • 한국음향학회지
    • /
    • 제37권4호
    • /
    • pp.256-261
    • /
    • 2018
  • 차량 내부에는 BSR(Buzz, Squeak, Rattle) 세 가지 유형의 소음이 발생한다. 본 논문에서는 심층 컨볼루션 신경망으로 추출한 소음 특징에 기반하여 자동으로 차량 내부의 BSR 소음을 분류하는 분류기를 제안한다. 차량 내부의 소음은 전처리 단계에서 STFT(Short-time Fourier Transform) 알고리즘을 사용하여 소음 맵으로 표현된다. 생성된 소음 맵 내부에서 실제 소음의 위치를 정확하게 파악하기 어려운 문제에 대처하기 위해서 슬라이딩 윈도우 방법으로 분할하였다. 본 논문에서는 t-SNE(t-Stochastic Neighbor Embedding) 알고리즘을 사용하여 심층 컨볼루션 신경망 내부 파라미터를 시각화하고 정성적인 방식으로 오분류데이터를 분석하였다. 분류된 데이터의 정량적인 분석을 위해 소음의 종류별 유사도를 SSIM(Structural Similarity Index) 수치에 기반하여 정량화하여 리트랙터의 떨림음이 정상주행음과 가장 유사하다는 것을 밝혔다. 제안하는 방법의 분류기는 기타 기계학습 알고리즘 대비 최고 분류 정확도를 달성하였다(99.15%).

젯슨 나노 기반 활성 함수에 따른 초해상화 알고리즘 성능 분석 연구 (A study on the Performance Analysis of Super-Resolution Algorithms by the activation functions using Jetson Nano)

  • 임재윤;김유민;김용우
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2022년도 춘계학술발표대회
    • /
    • pp.691-694
    • /
    • 2022
  • 최근 고해상도 영상이 필요하게 되었으며, 저해상도 영상을 고해상도 영상으로 변환하는 딥러닝 기반의 초해상도 알고리즘에 대한 연구가 활발히 진행되고 있다. 그럼에도 불구하고 딥러닝 기반의 초해상도 알고리즘은 하드웨어의 한계로 인해 임베디드 시스템에서 실행시간이 느린 단점이 있다. 본 논문에서는 심층신경망 기반의 초해상도 알고리즘의 네트워크 구조를 제시하고 다양한 활성화 함수에 따른 화질 및 실행시간 성능을 분석한다. 실험 결과, 젯슨 나노보드의 다양한 활성화 함수 중 화질과 실행 시간의 관계에서 도출한 최적의 활성화 함수가 PReLU 함수임을 확인하였다.

심층 신뢰 신경망을 이용한 오푸스 코덱 기반 인공 음성 대역 확장 기술 (Artificial speech bandwidth extension technique based on opus codec using deep belief network)

  • 최윤상;이아성;강상원
    • 한국음향학회지
    • /
    • 제36권1호
    • /
    • pp.70-77
    • /
    • 2017
  • 대역폭 확장 기술은 300 ~ 3,400 Hz 대역의 협대역 음성 신호를 50 ~ 7,000 Hz 대역의 광대역 음성신호로 확장하여 음질, 명료도, 그리고 자연성을 높이는 기술이다. 본 논문에서는 협대역 음성 정보를 이용하여 광대역 음성신호를 추정하는 인공 대역폭 확장 기술을 설계하여, 오푸스(Opus) 오디오 복호화기에 내장시킴으로써, 대역폭 확장 모듈에서의 LPC(Linear Prediction Coding) 분석 및 LSF(Line Spectral Frequencies) 해석과 관련된 계산량을 감소시켰고 알고리즘 지연도 줄였다. 이를 위해 현재 다양한 분야에 적용되고 있는 딥 러닝 기술 중 하나인 심층 신뢰 신경망(Deep Belief Network, DBN) 방식을 스펙트럼 포락선 확장에 도입하여 전통적인 코드북 매핑법보다 더 좋은 품질의 스펙트럼을 만들 수 있었다.

커널 모델과 장단기 기억 신경망을 결합한 보컬 및 비보컬 분리 (Vocal and nonvocal separation using combination of kernel model and long-short term memory networks)

  • 조혜승;김형국
    • 한국음향학회지
    • /
    • 제36권4호
    • /
    • pp.261-266
    • /
    • 2017
  • 본 논문에서는 커널 모델과 장단기 기억(Long-Short Term Memory, LSTM) 신경망을 결합한 보컬 및 비보컬 분리 방식을 제안한다. 기존의 음원 분리 방식은 비보컬 음원만 있는 구간에서 음원을 오추정하여 불필요한 비보컬 음원을 출력하는 한계가 있다. 따라서 본 논문에서는 커널 모델 기반의 보컬음 분리 방식에 LSTM 신경망 기반의 보컬 구간 분류 방식을 결합하여 보컬 음원의 오추정 문제를 개선하고 분리 성능을 향상시키고자 하였다. 또한 본 논문에서는 방식간의 결합 구조에 따라 병렬 결합형 분리 알고리즘과 직렬 결합형 분리 알고리즘을 제안하였으며, 실험을 통해 제안하는 방식들이 기존의 방식에 비해 더욱 향상된 분리 성능을 보이는 것을 확인할 수 있었다.

머신러닝을 사용한 단층 탐지 기술 연구 동향 분석 (Research Trend Analysis for Fault Detection Methods Using Machine Learning)

  • 배우람;하완수
    • 자원환경지질
    • /
    • 제53권4호
    • /
    • pp.479-489
    • /
    • 2020
  • 단층은 근원암에서 형성된 석유 가스 등의 탄화수소가 이동하는 통로이자 탄화수소를 가두는 덮개암의 역할을 할 수 있는 지질구조로, 탄화수소가 축적된 저류층을 찾기 위한 탄성파 탐사의 주요 대상 중 하나이다. 하지만 기존의 유사성, 응집성, 분산, 기울기, 단층가능성 등 탄성파 자료의 측면 방향 불연속성을 활용하는 단층 감지 방법들은 전문지식을 갖춘 해석자가 많은 계산 비용과 시간을 투자해야 한다는 문제가 있다. 따라서 많은 연구자들이 단층 해석에 필요한 계산 비용과 시간을 절약하기 위한 다양한 연구를 진행하고 있고, 최근에는 머신러닝 기술을 활용한 연구들이 활발히 수행되고 있다. 단층 해석에는 다양한 머신러닝 기술들 중 서포트백터머신, 다층퍼셉트론, 심층 신경망, 합성곱 신경망 등의 알고리즘이 사용되고 있다. 특히 합성곱 신경망을 활용한 연구는 독자적인 구조의 모델을 사용한 연구뿐만 아니라, 이미지 처리 분야에서 성능이 검증된 모델을 활용한 연구 및 단층의 위치와 주향, 경사 등의 정보를 함께 해석하는 연구도 활발히 진행되고 있다. 이 논문에서는 이러한 연구들을 조사하고 분석하여, 현재까지 단층 위치 및 단층 정보 해석에 가장 효과적인 기술은 영상 처리 분야에서 검증된 U-Net 구조를 바탕으로 한 합성곱 신경망인 것을 확인했다. 이러한 합성곱 신경망에 전이학습 및 데이터 증식 기법을 접목하면 앞으로 더욱 효과적인 단층 감지 및 정보 해석이 가능할 것으로 기대된다.

도로 노면 파손 인식을 위한 Multi-scale 학습 방식의 암호화 형식 의미론적 분할 알고리즘 (Encoder Type Semantic Segmentation Algorithm Using Multi-scale Learning Type for Road Surface Damage Recognition)

  • 심승보;송영은
    • 한국ITS학회 논문지
    • /
    • 제19권2호
    • /
    • pp.89-103
    • /
    • 2020
  • 고령화 사회에 접어들면서 거동이 어려운 장애인과 고령자의 개인 교통수단에 대한 수요가 증가하고 있다. 실제로 2017년 기준 전국 전동보장구 보급수는 9만여 대로 지속해서 증가하는 추세다. 하지만 장애인 및 고령자의 판단 능력과 조정 능력은 정상인보다 상대적으로 차이가 있는 관계로 주행 중 사고 발생의 가능성이 크다. 다양한 사고의 원인 중 하나는 도로 노면상태의 불균형으로 인해 개인 이동 수단 조향 제어의 간섭이다. 본 논문에서는 이 같은 사고를 예방하고자 도로 노면 상태를 고속으로 인지할 수 있는 암호화 형식 의미론적 분할 알고리즘을 소개한다. 이를 위하여 도로 노면 파손이 포함된 1,500여 장의 학습용 데이터와 150여 장의 테스트용 데이터를 새롭게 구성하였다. 그리고 이를 활용하여 기존의 Encoder와 Decoder 단계로 구성된 Auto-encoder 방식과 달리 Encoder 단계로 이루어진 심층 신경망을 제안하였다. 이 심층 신경망은 기존의 방식과 비교했을 때 평균 정확도(Mean Accuracy)는 4.45% 증가하였고 파라미터는 59.2% 감소하였으며 연산 속도는 11.9% 향상되었다. 이 같은 고속 알고리즘을 활용하여 안전한 개인 이동 수단이 확대 적용되길 기대한다.

심층학습 알고리즘을 이용한 보청기의 음향궤환 및 잡음 제거 (Acoustic Feedback and Noise Cancellation of Hearing Aids by Deep Learning Algorithm)

  • 이행우
    • 한국전자통신학회논문지
    • /
    • 제14권6호
    • /
    • pp.1249-1256
    • /
    • 2019
  • 본 논문에서는 보청기의 음향궤환 및 잡음을 제거하기 위한 새로운 알고리즘을 제안한다. 이 알고리즘은 기존의 FIR 구조를 이용하는 대신 신경망 적응예측필터를 이용한 심층학습 알고리즘으로 궤환 및 잡음제거 성능을 향상시킨다. 먼저 궤환제거기가 마이크 신호에서 궤환신호를 제거하고, 이어서 Wiener 필터기법을 이용하여 잡음을 제거한다. 잡음 제거는 음성신호가 가진 주기적 성질에 따라 선형예측모델을 이용하여 잡음이 포함된 음성신호로부터 음성을 추정해내는 것이다. 한 루프 안에 포함된 두 적응 시스템의 안정적 수렴을 보장하기 위해 궤환제거기 및 잡음제거기의 계수 업데이트를 분리하여 실시하며 제거 후 생성된 잔차신호를 이용하여 수렴시키는 과정을 진행한다. 본 연구에서 제안한 궤환 및 잡음제거기의 성능을 검증하기 위하여 시뮬레이션 프로그램을 작성하고 모의실험을 수행하였다. 실험 결과, 제안한 심층학습 알고리즘을 사용하면 기존의 FIR 구조를 사용하는 경우보다 궤환제거기에서 약 10 dB의 SFR(: Signal to Feedback Ratio), 잡음제거기에서 약 3 dB의 SNRE(: Signal to Noise Ratio Enhancement) 개선효과를 얻을 수 있는 것으로 확인되었다.

딥러닝 기술 기반의 레이더 초해상화 알고리즘 기술 개발 (Development of Radar Super Resolution Algorithm based on a Deep Learning)

  • 김호준;오랑치맥 솜야;조혜미;권현한
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.417-417
    • /
    • 2023
  • 도시홍수는 도시의 주요 기능을 마비시킬 수 있는 수재해로서, 최근 집중호우로 인해 홍수 및 침수 위험도가 증가하고 있다. 집중호우는 한정된 지역에 단시간 동안 집중적으로 폭우가 발생하는 현상을 의미하며, 도시 지역에서 강우 추정 및 예보를 위해 레이더의 활용이 증대되고 있다. 레이더는 수상체 또는 구름으로부터 반사되는 신호를 분석해서 강우량을 측정하는 장비이다. 기상청의 기상레이더(S밴드)의 주요 목적은 남한에 발생하는 기상현상 탐지 및 악기상 대비이다. 관측반경이 넓기에 도시 지역에 적합하지 않는 반면, X밴드 이중편파레이더는 높은 시공간 해상도를 갖는 관측자료를 제공하기에 도시 지역에 대한 강우 추정 및 예보의 정확도가 상대적으로 높다. 따라서, 본 연구에서는 딥러닝 기반 초해상화(Super Resolution) 기술을 활용하여 저해상도(Low Resolution. LR) 영상인 S밴드 레이더 자료로부터 고해상도(High Resolution, HR) 영상을 생성하는 기술을 개발하였다. 초해상도 연구는 Nearest Neighbor, Bicubic과 같은 간단한 보간법(interpolation)에서 시작하여, 최근 딥러닝 기반의 초해상화 알고리즘은 가장 일반화된 합성곱 신경망(CNN)을 통해 연구가 이루어지고 있다. X밴드 레이더 반사도 자료를 고해상도(HR), S밴드 레이더 반사도 자료를 저해상도(LR) 입력자료로 사용하여 초해상화 모형을 구성하였다. 2018~2020년에 발생한 서울시 호우 사례를 중심으로 데이터를 구축하였다. 구축된 데이터로부터 훈련된 초해상도 심층신경망 모형으로부터 저해상도 이미지를 고해상도로 변환한 결과를 PSNR(Peak Signal-to-noise Ratio), SSIM(Structural SIMilarity)와 같은 평가지표로 결과를 평가하였다. 본 연구를 통해 기존 방법들에 비해 높은 공간적 해상도를 갖는 레이더 자료를 생산할 수 있을 것으로 기대된다.

  • PDF

심층 신경망을 활용한 전자문서 내 객체의 자동 추출 방법 연구 (Automatic Object Extraction from Electronic Documents Using Deep Neural Network)

  • 장희진;채영훈;이상원;조진용
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제7권11호
    • /
    • pp.411-418
    • /
    • 2018
  • 인공지능 기술의 확산으로 인해 과학기술 분야에서도 연구 데이터의 확보, 저장 및 활용이 중요시 되고 있는 상황이다. 연구 데이터를 확보하기 위해 전자문서 형태의 연구논문으로부터 그래프, 표와 같은 유의미한 객체를 추출하는 다양한 방법들이 제안되고 있다. 경험적 방법론을 이용하는 기존의 연구들은 문서의 편집 특성을 일반화하여 객체들을 추출하기 때문에 다수의 이질적인 형태를 갖는 전자문서들을 대상으로 연구결과를 적용하는데는 한계가 있다. 본 논문은 경험적 방법론의 경직성을 극복하고 이질적인 전자문서들로부터 목표 객체들을 효과적으로 추출하기 위해 심층 학습 기반의 객체 추출 시스템을 제안한다. 텐서플로우 객체 탐지 API의 Faster R-CNN 알고리즘을 기반으로 새로운 학습 모델을 생성했으며 심층 학습과 평가를 위해 총 100여 편의 연구논문들을 대상으로 목표 객체들을 데이터화했다. 마지막으로 성능평가를 통해 제안한 시스템이 경험적 방법론을 적용한 비교 대상에 비해 약 5.2% 높은 성능을 보임을 확인하였다.