KIPS Transactions on Software and Data Engineering
/
v.6
no.4
/
pp.203-210
/
2017
In this paper, we propose an effective neural network model for image caption generation and model transfer. This model is a kind of multi-modal recurrent neural network models. It consists of five distinct layers: a convolution neural network layer for extracting visual information from images, an embedding layer for converting each word into a low dimensional feature, a recurrent neural network layer for learning caption sentence structure, and a multi-modal layer for combining visual and language information. In this model, the recurrent neural network layer is constructed by LSTM units, which are well known to be effective for learning and transferring sequence patterns. Moreover, this model has a unique structure in which the output of the convolution neural network layer is linked not only to the input of the initial state of the recurrent neural network layer but also to the input of the multimodal layer, in order to make use of visual information extracted from the image at each recurrent step for generating the corresponding textual caption. Through various comparative experiments using open data sets such as Flickr8k, Flickr30k, and MSCOCO, we demonstrated the proposed multimodal recurrent neural network model has high performance in terms of caption accuracy and model transfer effect.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2018.10a
/
pp.617-619
/
2018
In this paper, We suggest a face image generating GAN model which is improved by an additive discriminator. This discriminator is trained to be specialized in preventing frequent mistake of generator. To verify the model suggested, we used $^*Inception$ score. We used 155,680 images of $^*celebA$ which is frontal face. We earned average 1.742p at Inception score and it is much better score compare to previous model.
Journal of the Korea Institute of Information and Communication Engineering
/
v.21
no.12
/
pp.2291-2297
/
2017
This paper describe to extract speech measure algorithm for evaluating a speech database, and presents generating method of a speech quality measure using DNN(Deep Neural Network). In our previous study, to produce an effective speech quality measure, we propose a combination of various speech measures which are highly correlated with WER(Word Error Rate). The new combination of various types of speech quality measures in this study is more effective to predict the speech recognition performance compared to each speech measure alone. In this paper, we describe the method of extracting measure using DNN, and we change one of the combined measure from GMM(Gaussican Mixture Model) score used in the previous study to DNN score. The combination with DNN score shows a higher correlation with WER compared to the combination with GMM score.
In this paper, we proposed a framework that generates the trajectory of a single rigid body based on its COM configuration and contact pose. Because we use a smaller input dimension than when we use a full body state, we can improve the learning time for reinforcement learning. Even with a 68% reduction in learning time (approximately two hours), the character trained by our network is more robust to external perturbations tolerating an external force of 1500 N which is about 7.5 times larger than the maximum magnitude from a previous approach. For this framework, we use centroidal dynamics to calculate the next configuration of the COM, and use reinforcement learning for obtaining a policy that gives us parameters for controlling the contact positions and forces.
Kim, Jongho;Lee, Dae Yeol;Cho, Seunghyun;Jeong, Seyoon;Choi, Jinsoo;Kim, Hui-Yong
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2018.06a
/
pp.213-216
/
2018
본 논문에서는 사람의 인지 시각 특성 중 하나인 JND(Just Noticeable Difference)를 이용한 인지 비디오 부호화 기법을 제안한다. JND 기반 인지 부호화 방법은 사람의 인지 시각 특성을 이용해 시각적으로 인지가 잘 되지 않는 인지 신호를 제거함으로 부호화 효율을 높이는 방법이다. 제안된 방법은 기존 수학적 모델 기반의 JND 기법이 아닌 최근 각광 받고 있는 데이터 중심(data-driven) 모델링 방법인 심층 신경망 기반 JND 모델 생성 기법을 제안한다. 제안된 심층 신경망 기반 JND 모델은 비디오 부호화 과정에서 입력 영상에 대한 전처리를 통해 입력 영상의 인지 중복(perceptual redundancy)를 제거하는 역할을 수행한다. 부호화 실험에서 제안된 방법은 동일하거나 유사한 인지화질을 유지한 상태에서 평균 16.86 %의 부호화 비트를 감소 시켰다.
Proceedings of the Korea Information Processing Society Conference
/
2021.05a
/
pp.343-346
/
2021
약물 디자인이란 단백질과 같은 생물학적 표적에 작용할 수 있는 새로운 약물을 개발하는 과정이다. 전통적인 방법은 탐색과 개발 단계로 구성되어 있으나, 하나의 신약 개발을 위해서는 10 년 이상의 장시간이 요구되기 때문에, 이러한 기간을 단축하기 위한 인공지능 기반의 약물 디자인 방법들이 개발되고 있다. 하지만 많은 심층학습 기반의 약물 디자인 모델들은 RNN 기법을 활용하고 있고, RNN 은 훈련속도가 느리다는 단점이 있기 때문에 개선의 여지가 남아있다. 이런 단점을 극복하기 위해 본 연구는 self-attention 과 variational autoencoder 를 활용한 SMILES 생성 모델을 제안한다. 제안된 모델은 최신 약물 디자인 모델 대비 훈련 시간을 1/36 단축하고, 뿐만 아니라 유효한 SMILES 를 더 많이 생성하는 것을 확인하였다.
최근 생체 정보를 이용한 사용자 인증 기술이 발전하면서 이를 모바일 기기에 적용하는 사례가 크게 증가하고 있다. 특히, 얼굴 기반 인증 방식은 비접촉식이며 사용이 편리하여 적용 범위가 점점 확대되고 있는 추세이다. 그러나, 사용자의 얼굴 사진이나 동영상 등을 이용한 위변조가 용이하기 때문에 모바일 기기 내 보안 유지에 어려움을 야기한다. 본 고에서는 이러한 문제를 해결하기 위해 최근 활발히 연구되고 있는 심층신경망 기반 얼굴 위변조 검출 연구의 최신 동향을 소개하고자 한다. 먼저, 기본 합성곱 신경망 구조부터 생성모델 기반의 위변조 검출 방법까지 다양한 신경망 구조를 이용한 위변조 검출 방법에 대해 설명한다. 또한, 심층신경망 학습을 위해 사용되는 얼굴 위변조 데이터셋에 대해서도 간략히 살펴보고자 한다.
Proceedings of the Korea Information Processing Society Conference
/
2017.11a
/
pp.865-868
/
2017
일반적으로 비디오로부터 캡션을 생성하는 작업은 입력 비디오로부터 특징을 추출해내는 과정과 추출한 특징을 이용하여 캡션을 생성해내는 과정을 포함한다. 본 논문에서는 효과적인 비디오 캡션 생성을 위한 심층 신경망 모델과 그 학습 방법을 소개한다. 본 논문에서는 입력 비디오를 표현하는 시각 특징 외에, 비디오를 효과적으로 표현하는 동적 의미 특징과 정적 의미 특징을 입력 특징으로 이용한다. 본 논문에서 입력 비디오의 시각 특징들은 C3D, ResNet과 같은 합성곱 신경망을 이용하여 추출하지만, 의미 특징은 본 논문에서 제안하는 의미 특징 추출 네트워크를 활용하여 추출한다. 그리고 이러한 특징들을 기반으로 비디오 캡션을 효과적으로 생성하기 위하여 선택적 주의집중 캡션 생성 네트워크를 제안한다. Youtube 동영상으로부터 수집된 MSVD 데이터 집합을 이용한 다양한 실험을 통해, 본 논문에서 제안한 모델의 성능과 효과를 확인할 수 있었다.
Proceedings of the Korea Information Processing Society Conference
/
2022.11a
/
pp.75-76
/
2022
현재 산업용 로봇 팔의 경로 계획을 생성할 때, 로봇 팔 경로 계획은 로봇 엔지니어가 수동으로 로봇을 제어하며 최적 경로 계획을 탐색한다. 미래에 고객의 다양한 요구에 따라 공정을 유연하게 변경하는 대량 맞춤 시대에는 기존의 경로 계획 수립 방식은 부적합하다. 심층강화학습 프레임워크는 가상 환경에서 로봇 팔 경로 계획 수립을 학습해 새로운 공정으로 변경될 때, 최적 경로 계획을 자동으로 수립해 로봇 팔에 전달하여 빠르고 유연한 공정 변경을 지원한다. 본 논문에서는 심층강화학습 에이전트를 위한 학습 환경 구축과 인공지능 모델과 학습 환경의 연동을 중심으로, 로봇 팔 경로 계획 수립을 위한 심층강화학습 프레임워크 구조를 설계한다.
Proceedings of the Korea Information Processing Society Conference
/
2018.05a
/
pp.424-427
/
2018
영상이나 비디오에 담긴 장면을 이해하는 것은 컴퓨터 비전의 궁극적인 목표 중 하나이다. 본 논문에서는 입력 영상으로부터 장면을 구성하는 각 물체들과 그들 간의 공간 관계, 개별 물체들의 다양한 속성들을 탐지해, 지식 그래프를 생성해주는 심층 신경망 기반의 물체 속성 및 공간 관계 탐지 모델을 제안한다. 본 논문에서는 이러한 다양한 복합 시각 인식 작업을 동시에 수행하는 탐지 모델의 구성에 대해 설명하고, 대규모 벤치마크 데이터 집합인 CLEVR을 이용한 탐지 모델의 성능 분석 실험 결과를 소개한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.