• Title/Summary/Keyword: 실험모드특성

Search Result 828, Processing Time 0.032 seconds

A Monte Carlo Simulation Study of a Therapeutic Proton Beam Delivery System Using the Geant4 Code (Geant4 몬테카를로 코드를 이용한 양성자 치료기 노즐의 전산모사)

  • Shin, Jungwook;Shim, Hyunha;Kwak, Jungwon;Kim, Dongwook;Park, Sungyong;Cho, Kwan Ho;Lee, Se Byeong
    • Progress in Medical Physics
    • /
    • v.18 no.4
    • /
    • pp.226-232
    • /
    • 2007
  • We studied a Monte Carlo simulation of the proton beam delivery system at the National Cancer Center (NCC) using the Geant4 Monte Carlo toolkit and tested its feasibility as a dose verification framework. The Monte Carlo technique for dose calculation methodology has been recognized as the most accurate way for understanding the dose distribution in given materials. In order to take advantage of this methodology for application to external-beam radiotherapy, a precise modeling of the nozzle elements along with the beam delivery path and correct initial beam characteristics are mandatory. Among three different treatment modes, double/single-scattering, uniform scanning and pencil beam scanning, we have modeled and simulated the double-scattering mode for the nozzle elements, including all components and varying the time and space with the Geant4.8.2 Monte Carlo code. We have obtained simulation data that showed an excellent correlation to the measured dose distributions at a specific treatment depth. We successfully set up the Monte Carlo simulation platform for the NCC proton therapy facility. It can be adapted to the precise dosimetry for therapeutic proton beam use at the NCC. Additional Monte Carlo work for the full proton beam energy range can be performed.

  • PDF

Nondestructive Diagnosis of NPP Piping System Using Ultrasonic Wave Imaging Technique Based on a Pulsed Laser Scanning System (펄스 레이저 스캐닝 기반 초음파 영상화 기술을 활용한 원전 배관 비파괴 진단)

  • Kim, Hyun-Uk;Lee, Chang-Gil;Park, Seung-Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.1
    • /
    • pp.166-173
    • /
    • 2014
  • A noncontact nondestructive testing (NDT) method is proposed to detect the damage of pipeline structures and to identify the location of the damage. To achieve this goal, a scanning laser source actuation technique is utilized to generate a guided wave and scans a specific area to find damage location more precisely. The ND: YAG pulsed laser is used to generate Lamb wave and a piezoelectric sensor is installed to measure the structural responses. The measured responses are analyzed using three dimensional Fourier transformation (3DFT). The damage-sensitive features are extracted by wavenumber filtering based on the 3D FT. Then, flaw imaging techniques of a pipeline structures is conducted using the damage-sensitive features. Finally, the pipes with notches are investigated to verify the effectiveness and the robustness of the proposed NDT approach.

Real-time Recognition and Tracking System of Multiple Moving Objects (다중 이동 객체의 실시간 인식 및 추적 시스템)

  • Park, Ho-Sik;Bae, Cheol-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.7C
    • /
    • pp.421-427
    • /
    • 2011
  • The importance of the real-time object recognition and tracking field has been growing steadily due to rapid advancement in the computer vision applications industry. As is well known, the mean-shift algorithm is widely used in robust real-time object tracking systems. Since the mentioned algorithm is easy to implement and efficient in object tracking computation, many say it is suitable to be applied to real-time object tracking systems. However, one of the major drawbacks of this algorithm is that it always converges to a local mode, failing to perform well in a cluttered environment. In this paper, an Optical Flow-based algorithm which fits for real-time recognition of multiple moving objects is proposed. Also in the tests, the newly proposed method contributed to raising the similarity of multiple moving objects, the similarity was as high as 0.96, up 13.4% over that of the mean-shift algorithm. Meanwhile, the level of pixel errors from using the new method keenly decreased by more than 50% over that from applying the mean-shift algorithm. If the data processing speed in the video surveillance systems can be reduced further, owing to improved algorithms for faster moving object recognition and tracking functions, we will be able to expect much more efficient intelligent systems in this industrial arena.

Design and Implementation of Plannar S-DMB Antenna with Omni-Directional Radiation Pattern Using Metamaterial Technique (메타 물질 기법을 이용한 전방향성 복사 패턴을 갖는 평면형 S-DMB 안테나 설계 및 구현)

  • An, Chan-Kyu;Yu, Ju-Bong;Jeon, Jun-Ho;Kim, Woo-Chan;Yang, Woon-Geun;Nah, Byung-Ku;Lee, Jae-Ho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.12
    • /
    • pp.1343-1351
    • /
    • 2010
  • In this paper, a novel patch antenna based on the metamaterial CRLH(Composite Right- and Left-Handed) structure is designed, implemented, and measured. Contrary to the standard microstrip patch's fundamental resonance mode of half-wavelength or its positive multiple, the proposed antenna shows the in-phase electric field over the entire antenna. The proposed antenna has a desired omni-directional field pattern which is typical characteristic of $\lambda/4$ monopole antenna, and also shows the merit of low profile. HFSS(High Frequency Structure Simulator) of Ansoft which is based on the FEM(Finite Element Method) is used to simulate the proposed antenna. FR-4 substrate of thickness 1.6 mm and relative permitivity 4.4 is used for the proposed antenna implementation. The implemented antenna showed VSWR (Voltage Standarding Wave Ratio)$\leq$2 for the frequency band from 2.63 GHz to 2.655 GHz which is used for S-DMB (Satellite-Digital Multimedia Broadcasting) service. And measured peak gain and efficiency are 2.65 dBi and 81.14 %, respectively.

Development of a New Lumped-Mass Stick Model using the Eigen-Properties of Structures (구조물의 동적 고유특성을 이용한 새로운 집중질량모델 개발)

  • Roh, Hwa-Sung;Youn, Ji-Man;Lee, Hu-Seok;Lee, Jong-Seh
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.16 no.4
    • /
    • pp.19-26
    • /
    • 2012
  • For a seismic design or performance evaluation of a structure, an experimental investigation on a scale model of the structure or numerical analysis based on the finite element model is considered. Regarding the numerical analysis, a three-dimensional finite element analysis is performed if a high accuracy of the results is required, while a sensitivity or fragility analysis which uses huge seismic ground motions leads to the use of a lumped-mass stick model. The conventional modeling technique to build the lumped-mass stick model calculates the amount of the lumped mass by considering the geometric shape of the structure, like a tributary area. However, the eigenvalues of the conventional model obtained through such a calculation are normally not the same as those of the actual structure. In order to overcome such a deficiency, in this study, a new lumped mass stick model is proposed. The model is named the "frequency adaptive-lumped-mass stick model." It provides the same eigenvalues and similar dynamic responses as the actual structure. A non-prismatic column is considered as an example, and its natural frequencies as well as the dynamic performance of the new lumped model are compared to those of the full-finite element model. To investigate the damping effect on the new model, 1% to 5% of the critical damping ratio is applied to the model and the corresponding results are also compared to those of the finite element model.

Damage Estimation Method for Jacket-type Support Structure of Offshore Wind Turbine (재킷식 해상풍력터빈 지지구조물의 손상추정기법)

  • Lee, Jong-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.8
    • /
    • pp.64-71
    • /
    • 2017
  • A damage estimation method is presented for jacket-type support structure of offshore wind turbine using a change of modal properties due to damage and committee of neural networks for effective structural health monitoring. For more practical monitoring, it is necessary to monitor the critical and prospective damaged members with a limited number of measurement locations. That is, many data channels and sensors are needed to identify all the members appropriately because the jacket-type support structure has many members. This is inappropriate considering economical and practical health monitoring. Therefore, intensive damage estimation for the critical members using a limited number of the measurement locations is carried out in this study. An analytical model for a jacket-type support structure which can be applied for a 5 MW offshore wind turbine is established, and a training pattern is generated using the numerical simulations. Twenty damage cases are estimated using the proposed method. The identified damage locations and severities agree reasonably well with the exact values and the accuracy of the estimation can be improved by applying the committee of neural networks. A verification experiment is carried out, and the damage arising in 3 damage cases is reasonably identified.

3-Dimensional Numerical Analysis of Air Flow inside OWC Type WEC Equipped with Channel of Seawater Exchange and Wave Characteristics around Its Structure (in Case of Regular Waves) (해수소통구를 구비한 진동수주형 파력발전구조물 내에서 공기흐름과 구조물 주변에서 파랑특성에 관한 3차원수치해석(규칙파의 경우))

  • Lee, Kwang Ho;Lee, Jun Hyeong;Jeong, Ik Han;Kim, Do Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.30 no.6
    • /
    • pp.242-252
    • /
    • 2018
  • It is well known that an Oscillating Water Column Wave Energy Converter (OWC-WEC) is one of the most efficient wave absorber equipment. This device transforms the vertical motion of water column in the air chamber into the air flow velocity and produces electricity from the driving force of turbine as represented by the Wells turbine. Therefore, in order to obtain high electric energy, it is necessary to amplify the water surface vibration by inducing resonance of the piston mode in the water surface fluctuation in the air chamber. In this study, a new type of OWC-WEC with a seawater channel is used, and the wave deformation by the structure, water surface fluctuation in the air chamber, air outflow velocity from the nozzle and seawater flow velocity in the seawater channel are evaluated by numerical analysis in detail. The numerical analysis model uses open CFD code OLAFLOW model based on multi-phase analysis technique of Navier-Stokes solver. To validate model, numerical results and existing experimental results are compared and discussed. It is revealed within the scope of this study that the air flow velocity at nozzle increases as the Ursell number becomes larger, and the air velocity that flows out from the inside of the air chamber is larger than the velocity of incoming air into the air chamber.

3D Porous Foam-based Triboelectric Nanogenerators for Energy Harvesting (3차원 기공구조를 이용한 정전기반 에너지 하베스팅 나노발전기 소자제조)

  • Jeon, Sangheon;Jeong, Jeonghwa;Hong, Suck Won
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.1
    • /
    • pp.9-15
    • /
    • 2019
  • Here, we present a facile route to fabricate a vertically stacked 3D porous structure-based triboelectric nanogenerator (TENG) that can be used to harvest energy from the friction in a repetitive contact-separation mode. The unit component of TENG consists of thin Al foil electrodes integrated with microstructured 3D foams such as Ni, Cu, and polyurethane (PU), which provide advantageous tribo-surfaces specifically to increase the friction area to the elastomeric counter contact surfaces (i.e., polydimethylsiloxane, PDMS). The periodic contact/separation-induced triboelectric power generation from a single unit of the 3D porous structure-based TENG was up to $0.74mW/m^2$ under a mild condition. To demonstrate the potential applications of our approach, we applied our TENGs to small-scale devices, operating 48 LEDs and capacitors. We envision that this energy harvesting technology can be expanded to the applications of sustainably operating portable electronic devices in a simple and cost-effective manner by effectively harvesting wasted energy resources from the environment.

An Analysis of Temperature Change and TI MI using Tissue Mimicking Phantom in Ultrasonic Examination (초음파검사에서 인체모의 매질팬텀을 이용한 온도 변화와 TI MI 분석)

  • Cheol-Min, Jeon;Jae-Bok, Han;Jong-Gil ,Kwak;Jong-Nam, Song
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.6
    • /
    • pp.751-759
    • /
    • 2022
  • Currently, ultrasound examination for diagnostic ultrasound and health examination purposes is widely used, and it is showing an increasing trend due to the application of health insurance. However, the risk of ultrasound has not been clearly identified so far, and in this study, surface and deep temperature changes according to frequency and mode were measured by using a tissue mimicking phantom and TI and MI values were compared. A simulated phantom was manufactured by adding a small amount of kappa-caraginan powder with acoustic characteristics similar to that of the human body and potassium chloride for solidification, and the change of surface and depth temperature was measured using a surface thermometer and a probe thermometer. As a result, the convex probe using low frequency showed a higher temperature increase than the linear probe using high frequency, so there was a significant difference, and the temperature increase was the highest on the surface, and the depth of 1cm showed a temporary temperature increase, but there was no significant temperature change. There was no change in the deep temperature of 5 cm to 15 cm, and the TI and MI values did not change during the test time. Since only the surface temperature rose during the 15-minute test and there was no temperature change in the core, so it is not expected to show a temperature change that is harmful to the human body. However, it is thought that prolonged examination of one area may cause temperature rise, so it should be avoided.

Bending Performances and Collapse Mechanisms of Light-weight Aluminum-GERP Hybrid Square Tube Beams (경량화 알루미늄-GFRP 혼성 사각관 보의 굽힘성능 및 붕괴 메커니즘)

  • Lee, Sung-Hyuk;Kim, Hyung-Jin;Chang, Young-Wook;Choi, Nak-Sam
    • Composites Research
    • /
    • v.20 no.3
    • /
    • pp.8-16
    • /
    • 2007
  • Bending collapse of light-weight square tubes used for vehicle structure components is a dominant failure mode in oblique collision and rollover of vehicles. In this paper bending performances of aluminum-GFRP hybrid tube beams were evaluated in relation with bending deformation behavior and energy absorption characteristics. Aluminum/GFRP hybrid tube beams fabricated by inserting adhesive film between prepreg and metal layer were used in the bending test. Failure mechanisms of hybrid tubes under a bending load were experimentally investigated to analyze the bending performance as a function of ply orientation and composite layer thickness. Ultimate bending moments and energy absorption capacity of hybrid tube beams were obtained from the measured load-displacement corves. It was found that aluminum/GFRP hybrid tubes could be converted to rather stable collapse mode showing excellent energy absorption capacity in comparison to the pure aluminum tube beams. In particular, the hybrid tube beam with $[0^{\circ}/90^{\circ}]s$ composite layer showed a large improvement by about 78% in energy absorption capacity and by 29% in specific energy absorption.