• Title/Summary/Keyword: 실질적 과학 탐구

Search Result 29, Processing Time 0.018 seconds

Analysis of earth science textbook and beginning teachers' perception & practices with the view of ASI (Authentic Scientific Inquiry) (ASI (실질적 과학탐구) 관점으로 분석한 지구과학교과서와 초임교사 인식 및 실천)

  • Park, Yeong-Sin;Kim, Yeong-Seon;Park, Seul-Gi
    • 한국지구과학회:학술대회논문집
    • /
    • 2010.04a
    • /
    • pp.19-19
    • /
    • 2010
  • 현재 과학교육의 목표는 과학적 소양의 함양이며 이를 구현하기 위해서는 교실에서의 과학탐구의 실현을 필수로 하고 있다. 과학자들이 경험하는 과학탐구는 "실질적 과학탐구(ASI)"라고 하여 필수적인 5가지 탐구요소(문제제기, 자료수집, 설명형성, 설명평가, 발표 및 정당화)를 포함하고 있다. 현재 사용하고 있는 지구과학내용의 교과서를 이 ASI 관점으로 분석하여 5가지 탐구요소의 분포도를 분석하고 이를 이용하여 지구과학탐구를 가르치는 초임교사를 대상으로 탐구에 대한 인식 및 교수실천을 같은 ASI관점으로 분석하였다. 탐구요소 2,3,4 에 해당하는 '증거수집', '설명형성' 그리고 '설명평가'는 빈번하게 나타났으나 탐구요소 1에 해당하는 '문제제기'나 5에 해당하는 '발표 및 정당화'의 기회는 나타나지 않았다. 특히 다른 과학(화학)과목 경우에 '증거수집'이 가장 빈번한 것에 비해 지구과학의 경우에는 '설명형성'이 주를 이루는 것은 지구과학탐구의 특징이라 할 수 있겠다. 또한 교과서 탐구기능은 SAPA로 분석한 결과 일반화, 의사소통, 예상, 그래프작성, 자료해석이 주를 이루었다. 과학적 소양을 함양을 위한 실질적인 과학탐구의 실현하기 위해서는 자유탐구와 같은 부차적인 기회를 통해서 경험하지 못한 ASI의 탐구요소의 기회를 학생들에게 부여해야 할 것이다. 또한 이 연구에 참여한 지구과학 초임교사의 과학탐구 인식 및 교수실천 또한 ASI로 분석한 결과 탐구요소 2번째에 치우친 경향을 보여주고 있었다. 실질적인 과학탐구의 실현을 위해서는 교과서에서 강조되는 탐구요소뿐만 아니라 다른 탐구요소를 경험할 수 있는 자유탐구를 개발하여 실용화해야 할 것이며, 관련 초임교사연수를 통해 초임교사들의 과학탐구에 대한 인식 및 교수실천의 반영 및 이들의 새로운 형성이 추진되어야 할 것이다.

  • PDF

Theoretical Study on the Opportunity of Scientific Argumentation for Implementing Authentic Scientific Inquiry (교실에서의 실질적 과학 탐구를 위한 과학적 논증 기회에 대한 이론적 고찰)

  • Park, Young-Shin
    • Journal of the Korean earth science society
    • /
    • v.27 no.4
    • /
    • pp.401-415
    • /
    • 2006
  • The science education reforms put the emphasis of scientific literacy, so that students can understand how scientific knowledge is constructed through scientific inquiry at schools. However, scientific inquiry at schools has a problem as a cookbook system without the opportunity of developing argumentation, where students could understand how they use evidence to support their theory or vice versa. Teachers are supposed to understand the basic elements, purpose, and definition of scientific inquiry to implement authentic scientific inquiry at schools, then develop the instructional strategies of providing the opportunity of scientific argumentation to meet its needs.

Developmental Study of an Inquiry-Based Professional Development Program for In-Service Secondary Science Teachers (현직 중등과학교사의 과학탐구능력 발달을 위한 프로그램의 개발과 적용 효과에 대한 인식)

  • Park, Kuk-Tae;Park, Hyun-Ju;Kim, Kyung-Mee
    • Journal of The Korean Association For Science Education
    • /
    • v.25 no.4
    • /
    • pp.472-479
    • /
    • 2005
  • The purpose of this study was to develop an inquiry-based professional development program for in-service secondary science teachers and to investigate it's application. The inquiry-based professional development program was reconstructed based on SSCS problem-solving model, which is composed of 4 stages of search, solve, create, and share. The 28 science teachers' understanding of the SSCS program were investigated as implementing the program. As a result of this study, 8 SSCS modules have developed as the science teachers have searched, solved, created, and shared various situated problems. The science teachers found themselves to have positive perception of SSCS program. The SSCS program was effective in changing the learners' teaching/learning attitude and to develop individual scientific thinking. To make the SSCS problem solving successful and more effective, both science teachers' professionalism and pedagogical knowledge for selecting topic as the levels of learner should be considered.

A Case Study on the Features of Classroom Norms Formed in Inquiry Activities of Elementary Science Classes (초등학교 과학 수업의 탐구활동에서 형성되는 교실 규범의 특징에 대한 사례 연구)

  • Chang, Jina;Song, Jinwoong
    • Journal of The Korean Association For Science Education
    • /
    • v.35 no.2
    • /
    • pp.303-312
    • /
    • 2015
  • The purpose of this study is to analyze classroom norms formed in inquiry activities of elementary science classes and to consider about the actual problems in enacting school science inquiry. Focusing on the inquiry activity cases of two classes, the data were collected through classroom observation, student interview, teacher interview and questionnaires. Firstly, classroom norms were categorized into three categories theoretically: norms for behavior guidance; general academic norms; and scientific inquiry academic norms. The subcategory norms of each category were extracted inductively and the features, the causes of formation, and the influences on inquiry of each norm were also analyzed. Based on the analyses on classroom norms, the researchers identified three actual problems in enacting school science inquiry. First, the collective traits of school science inquiry caused structural problems in science classrooms. Second, teachers used their authorities in different ways according to phases of instructions. Third, the conflict cases were reported between general values for education and specific values for science inquiry. Educational implications are discussed in terms of the practices of school science inquiry and of the understanding classroom phenomena.

J. J. Schwab's life and His Ideas of Science Education (슈왑의 생애와 과학교육 사상)

  • Song, Jin-Woong
    • Journal of The Korean Association For Science Education
    • /
    • v.26 no.7
    • /
    • pp.856-869
    • /
    • 2006
  • J. J. Schwab is usually considered as the founder of the concept of scientific enquiry, perhaps the most important key word of science education of the 20th century. Mainly through the method of literature review, this study reappraises Schwab's life as a science educator as well as a curriculum scholar, and his ideas concerning several important issues about science and science education. Like other eminent science educators, before the 1950s, who were originally talented scientists but later became engaged in educational activities, Schwab were trained and known as a genetic scientist, but later he concentrated on university reform, curriculum studies and science education. His academic interest was very diverse across different disciplines, from biology and science in general to history, philosophy and education. The essence of his theory of scientific enquiry was 'to teach science as science', and the best way to do it was 'to teach science as enquiry'. With enquiry, however, he tried to deliver some important but differentiated meanings, for example by distinguishing 'science as enquiry' and 'teaching as enquiry', and 'static enquiry' and 'fluid enquiry'. Scientific enquiry was the core concept upon which many of his ideas concerning science education and education in general were based, such as the diversity of science, textbooks, curriculum and roles of teachers. In summary, Schwab can be characterized as a rational reformist of science education, who tried to identify the very nature and goals of the discipline and to bring its substantial changes with concrete and practical guidelines. Nevertheless, some of his ideas, like the diversity of science and conceptual invention, have been handed down by his followers frequently with considerable distortion.

The Analysis of Student-student Verbal Interactions on the Problem-solving Inquiry Which was Developed for Creativity-increment of the Gifted Middle School Students (중학교 과학 영재의 과학 창의성 신장을 위한 문제 해결형 탐구 실험에서의 학생 간 대화 분석)

  • Kim, Ji-Young;Ha, Ji-Hee;Park, Kuk-Tae;Kang, Seong-Joo
    • Journal of Gifted/Talented Education
    • /
    • v.18 no.1
    • /
    • pp.1-21
    • /
    • 2008
  • The purpose of this study was to develop problem-solving inquiries for the science gifted and to analyze the effects of problem-solving inquiries. The problem-solving inquiries were composed of scientific knowledge, scientific inquiry skills and creative thinking. The problem-solving inquiries were applied to the science gifted attending the institute of the gifted education. The test of science-creative problem solving (TSCPS) was used to know effects of improvement of science-creativity and the result of TSCPS showed the improvement of science creativity. The analysis of student-student dialogues during experiments showed that the type of dialogue was different on the type of problem-solving inquiry. The dialogue of convergent thinking was frequently showed up on the problem-solving inquiry needed logical thinking whereas that of divergent thinking on the problem-solving inquiry needed idea generation. The problem-solving inquiries had a positive effects on the improvement of the science-creativity.

Issues and Effects in Developing Inquiry-Based Argumentation Task for Science Teachers: A Case of Charles' Law Experiment (탐구 실험을 활용한 과학교사 논변 과제 개발과정에서 드러난 쟁점 및 수정 효과: 기체에 대한 샤를의 법칙 실험 사례)

  • Baek, Jongho;Jeong, Dae Hong;Hwang, Seyoung
    • Journal of The Korean Association For Science Education
    • /
    • v.34 no.2
    • /
    • pp.79-92
    • /
    • 2014
  • The purpose of this study is to develop an inquiry-based argumentation task for use in science teachers' professional development by providing them with the substantial experience of argumentation. To do so, the study has developed an argumentation task by utilizing the experiment on the Charles' Law of gas and revised by applying to eight teachers three times. We have revised the questions by analyzing three issues that have been revealed throughout this process in ways that facilitated teachers' argumentation. The effects of revision have been confirmed by the improvements in teachers' argumentation pattern. Three issues have been identified in developing argumentation tasks for science teachers' professional development and they are as follows: determining the openness of the structure of a question, achieving cognitive conflict and convergence of opinions at the same time, and ways of utilizing various evidence. As the task has been revised in ways that enabled scientific approach to the inquiry topic and facilitated the convergence of various opinions, the participants' argumentation patterns have improved both quantitatively and qualitatively. Meanwhile, the inclusion of an actual experiment has not influence their argumentation, while the observation of experimental data has been used as the core evidence according to the character of the problem. Based on the study's result, we suggest practical implications for developing argumentation tasks for science teachers in more varying contexts.

Fundamental Structure of Knowledge in Nursing (간호학의 기본 지식 구조)

  • Lee, Kwang-Ja
    • Journal of Korean Academy of Nursing
    • /
    • v.13 no.3
    • /
    • pp.127-144
    • /
    • 1983
  • 오늘날은 과학문명의 발달로 인하여 기존지식의 수명이 점차 짧아져 가고있는 것이 특징이다. 지식의 증가는 단순히 지식의 양을 증가시키는 역할뿐 아니라 많은 기존지식을 불충분하고 쓸모 없는 것으로 바꿔버리게 한다. 그러므로 학교에서는 학생들에게 어떤 특정지식의 축척보다는 그 학문에 내재해 있는 기본적인 지식의 구조를 학습하게 하여 여러 가지 개념을 관련시키는 논리적 방법을 학습하게 하고 합리적인 탐구방법을 구사할 수 있도록 하여 변화하는 미지의 세계에 대처해 나갈 수 있도록 하는 것이 중요하다. 본 연구는 간호학의 기본 지식구조를 확인하는데 그 목적이 있다. 본 연구를 하게 된 동기는 간호업무의 근거로 활용도리 지식체계는 교육과정의 조직원리로 작용될 유형이나 구조를 지니고 있으며 이런 유형이나 구조를 중심으로 간호교육과정을 구성하는 것이 간호교육에 필수적이라는 문제에서 비롯되었다. 연구방법은 1982년 9월부터 1983년 5월에 걸쳐 간호학 문헌을 체계적으로 분석하여 간호학의 개념적 지식구조와 구문적 지식구조를 확인하였다. 그 결과 얻어진 결론은 다음과 같다. 1. 간호학의 개념적 구조: 모든 학문에는 탐구의 대상인 특수현상을 설명하고 서술하는데 활용되는 일련의 실질적, 개념적 구조를 가지고 있다. 그러나 그 학문의 중요한 부분 또는 중심을 포함하고 있는 개념들이 그 분야 또는 학문의 개략이라고 할 수 있는데 연구결과 간호학에서 가장 높은 순위의 대표적 특질을 지닌 개념은 인간, 건강, 환자/대상자, 간호, 행동으로 분석되었다. 2. 간호학의 구문적 지식구조 : 지식구조의 두 번째 요소인 학문의 구문(syntax)은 간호학에서의 특징적인 탐구방법과 관련되나 개념적 구조와 마찬가지로 탐구방법은 학문에 따라 다르며 그 분야의 주요양상을 나타낸다. 연구결과 간호학에서의 특징적인 탐구방법은 공동적으로 간호과정(nursing process)임이 나타났으며 그 요인으로는 사정, 진단, 계획, 수행, 평가의 다섯 단계로 분석되었다.

  • PDF

Analyzing Perceptions of Small Group Inquiry Activity in the Gifted Education of Korea (한국영재교육에서 소집단 탐구활동에 대한 인식 분석)

  • Jeong, Hyun-Chul;Park, Young-Shin;Hwang, Dong-Jou
    • Journal of the Korean earth science society
    • /
    • v.29 no.2
    • /
    • pp.151-162
    • /
    • 2008
  • This study quantitatively investigated the actual situations and perceptions of gifted students and their teachers during small group inquiry activities in Korea. Some 1,670 gifted math students and 1,732 gifted science students as well as 614 of their teachers were selected through random sampling to participate in this study. Data were collected by means of a survey developed by the researchers of this study, based on reviews of literature related to inquiry and small group cooperative learning. The results were as follows: (1) In Korean gifted education, small group inquiry activities were frequently used as teaching and learning strategies, and both the students and teachers perceived its effects to be very positive in terms of cognition and affection. (2) Gifted education teachers emphasized the development of students' procedural inquiry skills as well as logical thinking skills, whereas they were indifferent to the essential elements of small group cooperative learning and therefore the lessons did not surpass the level of traditional group activities. (3) The fact that the actual small group inquiry activities did not reflect the characteristics of well-organized small group activities is due to a lack of knowledge on the teacher's part as to effective teaching strategies concerning cooperative learning. This study implies that gifted education teachers require the opportunity to reflect on and develop their knowledge and understanding of small group inquiry activities through professionally developed programs in order to maximize the effectiveness of small group inquiry activities in gifted education.

An Analysis on the Factors that Causes the Difference between Teachers and Students on the Perception of the Laboratory Class Aims in Elementary School (초등학교 과학 수업에서 교사와 학생 간에 과학 실험 목적 인식의 차이가 발생하는 원인 분석)

  • Lim, Jae-Keun;Lee, So-Ri;Kim, Ju-Young;Yang, Il-Ho
    • Journal of Science Education
    • /
    • v.34 no.2
    • /
    • pp.359-368
    • /
    • 2010
  • The purpose of this study was to find out the factor that causes the difference on understanding the aim and perception of laboratory activities between teachers and students. For this study, in-depth interview was conducted for sixth grade students and teachers of 10 classes. The questionnaire of the interview can be divided into 3 sections: the aim of laboratory activities, whether teachers present the aim of laboratory activities, the method of laboratory class progress and the evaluation method. The factors that bring about the difference between the teachers and the students on perception of the aim are the absence of proper guidance on the aim of laboratory activities, the laboratory classes that the progress out of teachers' intention and evaluation method that is the performed without any relationship with the aim of the laboratory activities. Because the teacher-intended aim of laboratory activities is not properly presented, students can't percept the accurate aim. Even though teachers recognize the importance of the improvement of science process skill acquired through laboratory activities, this is not delivered practically in the class and students also can't percept the importance of science process skill.

  • PDF