Choi, Jong In;Lee, Yun Hae;Gwon, Hee Min;Jeon, Dae Hoon;Lee, Yong Seon;Lee, Young Sun
Journal of Mushroom
/
v.17
no.3
/
pp.113-118
/
2019
Oyster mushrooms are an economically important crop, accounting for 35% of the total mushroom production in Korea. In this study, we developed a new cultivar of Pleurotus ostreatus, known as 'Baekseon,' which is characterized by a white pileus with a white stipe. It was bred by mating monokaryons isolated from white mutant oyster mushrooms that were naturally generated from 'Gonji-7ho' and 'Wonhyeong-1ho' at the Mushroom Research Institute, GARES, Korea in 2018. The optimum temperature for mycelial growth on potato dextrose agar medium was approximately $28-31^{\circ}C$, and the optimum temperatures for primordia formation and growth of fruit bodies on sawdust media were $22^{\circ}C$ and $20^{\circ}C$, respectively. The time required for the bottle-cultured mushrooms to complete spawn running, primordia formation, and growth of fruit bodies was 30 days, 4 days, and 4 days, respectively. The fruit bodies were bundle-shaped, the pilei were round type and white, and the stipes were white. The stipes were slender and longer than those of the control ('Miso'). In the productivity test, the yield per bottle was 185 g/1100 mL, which was 45% greater than that of the control ('Miso'). In the farm test, the yield per bottle for Farm A (Pyeongtaek) and Farm B (Yeoju) was 184 g/1100 mL and 178 g/850 mL, respectively. With regard to the physical properties of fruit bodies, the springiness, cohesiveness, gumminess, and brittleness of stipe tissue were 80%, 57%, 720 g, and 57 kg, respectively. These values were lower than those of the control ('Miso'). To test the shelf life, the fruit bodies were wrapped with antifogging film and stored at $4^{\circ}C$ for 28 days and then at room temperature for 4 days; such conditions were sufficient for maintaining edibility.
These experiments pertain to various factors influencing the quantitative characters of cocoon crops in summer and early autumn seasons. Initially, in order to establish the possible ways of the silkworm rearing more than three times a year in Korea, the author attempted to get further information about the various factors affecting the cocoon crop in every silkworm rearing season. The trials were conducted eleven times a year at four places for three years. The field trial was conducted with 19 typical sericultural farmers who had been surveyed. At the same time the author statistically analyzed the various factors in close relation to tile cocoon crop in autumn season. The effect of guidance on 40 sericultural farmers was analyzed, comparing higher level farmers with lower level farmers ; and the author surveyed 758 non-guided farmers near the guided farmers during both spring and autumn seasons. In addition, another trial on the seasonal change of leaf quality was attempted with artificial diets prepared with leaves grown in each season. It was found that related factors to cocoon crops in summer and early autumn seasons appeared to be leaf quality, and temperature for young and grown larvae. A 2$^4$ factorial experiment was designed in summer season, and another design with one more level of varied temperature or hard leaf added to a 24 factorial experiment was conducted in early autumn. The experimental results can be summarized: 1. Study on the cocoon crops in the different rearing seasons 1) It was shown that earlier brushing of silkworm generally produced the most abundant cocoon crop in spring season, and earlier or later than the conventional brushing season, especially earlier brushing was unfavorable for the abundant cocoon crop in autumn season. 2) The cocoon crop was affected by the rearing season, and decreases in order of sire with spring, autumn, late autumn, summer and early autumn seasons. 3) It was Proved that ordinary rearing and branch rearing were possibles 4 times a year ; in the 1st, 3rd, 8th, and 10th brushing season. But the 11th brushing season was more favorable for the most abundant cocoon crop of branch rearing, instead of the 10th brushing season with ordinary rearing. 2. Study on the main factors affecting the cocoon crop in autumn season 1) Accumulated pathogens were a lethal factor leading to a bad cocoon crop through neglect of disinfection of rearing room and instruments. 2) Additional factors leading to a poor cocoon crop were unfavorable for rearing temperature and humidity, dense population, poor choice of moderately ripened leaf, and poor feeding techniques. However, it seemed that there was no relationship between the cocoon crop and management of farm. 3) The percentage of cocoon shell seemed to be mostly affected by leaf quality, and secondarily affected by the accumulation of pathogens. 3. Study on the effect of guidance on rearing techniques 1) The guided farms produced an average yearly yield of 29.0kg of cocoons, which varied from 32.3kg to 25.817g of cocoon yield per box in spring versus autumn, respectively. Those figures indicated an annual average increase of 26% of cocoon yield over yields of non-guided farmers. An increase of 20% of cocoon yield in spring and 35% of cocoon yield in autumn were responsible. 2) On guided farms 77.1 and 83.7% of total cocoon yields in the spring and autumn seasons, respectively, exceeded 3rd grade. This amounted to increases of 14.1 and 11.3% in cocoon yield and quality over those of non-guided farms. 3) The average annual cocoon yield on guided farms was 28.9kg per box, based on a range of 31.2kg to 26.9kg per box in spring and autumn seasons, respectively. This represented an 8% increase in cocoon yield on farms one year after guidance, as opposed to non-guided farms. This yield increase was due to 3 and 16% cocoon yield increases in spring and autumn crops. 4) Guidance had no effect on higher level farms, but was responsible for 19% of the increases in production on lower level farms. 4. Study on the seasonal change of leaf quality 1) In tests with grown larvae, leaves of tile spring crop incorporated in artificial diets produced the best cocoon crop; followed by leaves of the late autumn, summer, autumn, and early autumn crops. 2) The cocoon crop for young larvae as well as for grown larvae varied with the season of leaf used. 5. Study on factors affecting the cocoon crops in summer and early autumn A. Early autumn season 1) Survival rate and cocoon yield were significantly decreased at high rearing temperatures for young larvae 2) Survival rate, cocoon yield, and cocoon quality were adversely affected by high rearing temperatures for grown larvae. Therefore increases of cocoon quantity and improvement of cocoon quality are dependent on maintaining optimum temperatures. 3) Decreases in individual cocoon weight and longer larval periods resulted with feeding of soft leaf and hard leaf to young larvae, but the survival rate, cocoon yield and weight of cocoon shell were not influenced. 4) Cocoon yield and cocoon quality were influenced by feeding of hard leaf to grown larvae, but survival rate was not influenced by the feeding of soft leaf and hard leaf. 5) When grown larvae were inevitably raised at varied temperatures, application of varied temperature in the raising of both young and grown larvae was desirable. Further research concerning this matter must be considered. B. Summer season 1) Cocoon yield and single cocoon weight were decreased at high temperatures for young larvae and survival rate was also affected. 2) Cocoon yield, survival rate. and cocoon quality were considerably decreased at high rearing temperatures for grown larval stages.
1. Introduction Today Internet is recognized as an important way for the transaction of products and services. According to the data surveyed by the National Statistical Office, the on-line transaction in 2007 for a year, 15.7656 trillion, shows a 17.1%(2.3060 trillion won) increase over last year, of these, the amount of B2C has been increased 12.0%(10.2258 trillion won). Like this, because the entry barrier of on-line market of Korea is low, many retailers could easily enter into the market. So the bigger its scale is, but on the other hand, the tougher its competition is. Particularly due to the Internet and innovation of IT, the existing market has been changed into the perfect competitive market(Srinivasan, Rolph & Kishore, 2002). In the early years of on-line business, they think that the main reason for success is a moderate price, they are awakened to its importance of on-line service quality with tough competition. If it's not sure whether customers can be provided with what they want, they can use the Web sites, perhaps they can trust their products that had been already bought or not, they have a doubt its viability(Parasuraman, Zeithaml & Malhotra, 2005). Customers can directly reserve and issue their air tickets irrespective of place and time at the Web sites of travel agencies or airlines, but its empirical studies about these Web sites for reserving and issuing air tickets are insufficient. Therefore this study goes on for following specific objects. First object is to measure service quality and service recovery of Web sites for reserving and issuing air tickets. Second is to look into whether above on-line service quality and on-line service recovery have an impact on overall service quality. Third is to seek for the relation with overall service quality and customer satisfaction, then this customer satisfaction and loyalty intention. 2. Theoretical Background 2.1 On-line Service Quality Barnes & Vidgen(2000; 2001a; 2001b; 2002) had invented the tool to measure Web sites' quality four times(called WebQual). The WebQual 1.0, Step one invented a measuring item for information quality based on QFD, and this had been verified by students of UK business school. The Web Qual 2.0, Step two invented for interaction quality, and had been judged by customers of on-line bookshop. The WebQual 3.0, Step three invented by consolidating the WebQual 1.0 for information quality and the WebQual2.0 for interactionquality. It includes 3-quality-dimension, information quality, interaction quality, site design, and had been assessed and confirmed by auction sites(e-bay, Amazon, QXL). Furtheron, through the former empirical studies, the authors changed sites quality into usability by judging that usability is a concept how customers interact with or perceive Web sites and It is used widely for accessing Web sites. By this process, WebQual 4.0 was invented, and is consist of 3-quality-dimension; information quality, interaction quality, usability, 22 items. However, because WebQual 4.0 is focusing on technical part, it's usable at the Website's design part, on the other hand, it's not usable at the Web site's pleasant experience part. Parasuraman, Zeithaml & Malhorta(2002; 2005) had invented the measure for measuring on-line service quality in 2002 and 2005. The study in 2002 divided on-line service quality into 5 dimensions. But these were not well-organized, so there needed to be studied again totally. So Parasuraman, Zeithaml & Malhorta(2005) re-worked out the study about on-line service quality measure base on 2002's study and invented E-S-QUAL. After they invented preliminary measure for on-line service quality, they made up a question for customers who had purchased at amazon.com and walmart.com and reassessed this measure. And they perfected an invention of E-S-QUAL consists of 4 dimensions, 22 items of efficiency, system availability, fulfillment, privacy. Efficiency measures assess to sites and usability and others, system availability measures accurate technical function of sites and others, fulfillment measures promptness of delivering products and sufficient goods and others and privacy measures the degree of protection of data about their customers and so on. 2.2 Service Recovery Service industries tend to minimize the losses by coping with service failure promptly. This responses of service providers to service failure mean service recovery(Kelly & Davis, 1994). Bitner(1990) went on his study from customers' view about service providers' behavior for customers to recognize their satisfaction/dissatisfaction at service point. According to them, to manage service failure successfully, exact recognition of service problem, an apology, sufficient description about service failure and some tangible compensation are important. Parasuraman, Zeithaml & Malhorta(2005) approached the service recovery from how to measure, rather than how to manage, and moved to on-line market not to off-line, then invented E-RecS-QUAL which is a measuring tool about on-line service recovery. 2.3 Customer Satisfaction The definition of customer satisfaction can be divided into two points of view. First, they approached customer satisfaction from outcome of comsumer. Howard & Sheth(1969) defined satisfaction as 'a cognitive condition feeling being rewarded properly or improperly for their sacrifice.' and Westbrook & Reilly(1983) also defined customer satisfaction/dissatisfaction as 'a psychological reaction to the behavior pattern of shopping and purchasing, the display condition of retail store, outcome of purchased goods and service as well as whole market.' Second, they approached customer satisfaction from process. Engel & Blackwell(1982) defined satisfaction as 'an assessment of a consistency in chosen alternative proposal and their belief they had with them.' Tse & Wilton(1988) defined customer satisfaction as 'a customers' reaction to discordance between advance expectation and ex post facto outcome.' That is, this point of view that customer satisfaction is process is the important factor that comparing and assessing process what they expect and outcome of consumer. Unlike outcome-oriented approach, process-oriented approach has many advantages. As process-oriented approach deals with customers' whole expenditure experience, it checks up main process by measuring one by one each factor which is essential role at each step. And this approach enables us to check perceptual/psychological process formed customer satisfaction. Because of these advantages, now many studies are adopting this process-oriented approach(Yi, 1995). 2.4 Loyalty Intention Loyalty has been studied by dividing into behavioral approaches, attitudinal approaches and complex approaches(Dekimpe et al., 1997). In the early years of study, they defined loyalty focusing on behavioral concept, behavioral approaches regard customer loyalty as "a tendency to purchase periodically within a certain period of time at specific retail store." But the loyalty of behavioral approaches focuses on only outcome of customer behavior, so there are someone to point the limits that customers' decision-making situation or process were neglected(Enis & Paul, 1970; Raj, 1982; Lee, 2002). So the attitudinal approaches were suggested. The attitudinal approaches consider loyalty contains all the cognitive, emotional, voluntary factors(Oliver, 1997), define the customer loyalty as "friendly behaviors for specific retail stores." However these attitudinal approaches can explain that how the customer loyalty form and change, but cannot say positively whether it is moved to real purchasing in the future or not. This is a kind of shortcoming(Oh, 1995). 3. Research Design 3.1 Research Model Based on the objects of this study, the research model derived is
. 3.2 Hypotheses 3.2.1 The Hypothesis of On-line Service Quality and Overall Service Quality The relation between on-line service quality and overall service quality I-1. Efficiency of on-line service quality may have a significant effect on overall service quality. I-2. System availability of on-line service quality may have a significant effect on overall service quality. I-3. Fulfillment of on-line service quality may have a significant effect on overall service quality. I-4. Privacy of on-line service quality may have a significant effect on overall service quality. 3.2.2 The Hypothesis of On-line Service Recovery and Overall Service Quality The relation between on-line service recovery and overall service quality II-1. Responsiveness of on-line service recovery may have a significant effect on overall service quality. II-2. Compensation of on-line service recovery may have a significant effect on overall service quality. II-3. Contact of on-line service recovery may have a significant effect on overall service quality. 3.2.3 The Hypothesis of Overall Service Quality and Customer Satisfaction The relation between overall service quality and customer satisfaction III-1. Overall service quality may have a significant effect on customer satisfaction. 3.2.4 The Hypothesis of Customer Satisfaction and Loyalty Intention The relation between customer satisfaction and loyalty intention IV-1. Customer satisfaction may have a significant effect on loyalty intention. 3.2.5 The Hypothesis of a Mediation Variable Wolfinbarger & Gilly(2003) and Parasuraman, Zeithaml & Malhotra(2005) had made clear that each dimension of service quality has a significant effect on overall service quality. Add to this, the authors analyzed empirically that each dimension of on-line service quality has a positive effect on customer satisfaction. With that viewpoint, this study would examine if overall service quality mediates between on-line service quality and each dimension of customer satisfaction, keeping on looking into the relation between on-line service quality and overall service quality, overall service quality and customer satisfaction. And as this study understands that each dimension of on-line service recovery also has an effect on overall service quality, this would examine if overall service quality also mediates between on-line service recovery and each dimension of customer satisfaction. Therefore these hypotheses followed are set up to examine if overall service quality plays its role as the mediation variable. The relation between on-line service quality and customer satisfaction V-1. Overall service quality may mediate the effects of efficiency of on-line service quality on customer satisfaction. V-2. Overall service quality may mediate the effects of system availability of on-line service quality on customer satisfaction. V-3. Overall service quality may mediate the effects of fulfillment of on-line service quality on customer satisfaction. V-4. Overall service quality may mediate the effects of privacy of on-line service quality on customer satisfaction. The relation between on-line service recovery and customer satisfaction VI-1. Overall service quality may mediate the effects of responsiveness of on-line service recovery on customer satisfaction. VI-2. Overall service quality may mediate the effects of compensation of on-line service recovery on customer satisfaction. VI-3. Overall service quality may mediate the effects of contact of on-line service recovery on customer satisfaction. 4. Empirical Analysis 4.1 Research design and the characters of data This empirical study aimed at customers who ever purchased air ticket at the Web sites for reservation and issue. Total 430 questionnaires were distributed, and 400 were collected. After surveying with the final questionnaire, the frequency test was performed about variables of sex, age which is demographic factors for analyzing general characters of sample data. Sex of data is consist of 146 of male(42.7%) and 196 of female(57.3%), so portion of female is a little higher. Age is composed of 11 of 10s(3.2%), 199 of 20s(58.2%), 105 of 30s(30.7%), 22 of 40s(6.4%), 5 of 50s(1.5%). The reason that portions of 20s and 30s are higher can be supposed that they use the Internet frequently and purchase air ticket directly. 4.2 Assessment of measuring scales This study used the internal consistency analysis to measure reliability, and then used the Cronbach'$\alpha$ to assess this. As a result of reliability test, Cronbach'$\alpha$ value of every component shows more than 0.6, it is found that reliance of the measured variables are ensured. After reliability test, the explorative factor analysis was performed. the factor sampling was performed by the Principal Component Analysis(PCA), the factor rotation was performed by the Varimax which is good for verifying mutual independence between factors. By the result of the initial factor analysis, items blocking construct validity were removed, and the result of the final factor analysis performed for verifying construct validity is followed above. 4.3 Hypothesis Testing 4.3.1 Hypothesis Testing by the Regression Analysis(SPSS) 4.3.2 Analysis of Mediation Effect To verify mediation effect of overall service quality of and , this study used the phased analysis method proposed by Baron & Kenny(1986) generally used. As
shows, Step 1 and Step 2 are significant, and mediation variable has a significant effect on dependent variables and so does independent variables at Step 3, too. And there needs to prove the partial mediation effect, independent variable's estimate ability at Step 3(Standardized coefficient $\beta$eta : efficiency=.164, system availability=.074, fulfillment=.108, privacy=.107) is smaller than its estimate ability at Step 2(Standardized coefficient $\beta$eta : efficiency=.409, system availability=.227, fulfillment=.386, privacy=.237), so it was proved that overall service quality played a role as the partial mediation between on-line service quality and satisfaction. As
shows, Step 1 and Step 2 are significant, and mediation variable has a significant effect on dependent variables and so does independent variables at Step 3, too. And there needs to prove the partial mediation effect, independent variable's estimate ability at Step 3(Standardized coefficient $\beta$eta : responsiveness=.164, compensation=.117, contact=.113) is smaller than its estimate ability at Step 2(Standardized coefficient $\beta$eta : responsiveness=.409, compensation=.386, contact=.237), so it was proved that overall service quality played a role as the partial mediation between on-line service recovery and satisfaction. Verified results on the basis of empirical analysis are followed. First, as the result of , it shows that all were chosen, so on-line service quality has a positive effect on overall service quality. Especially fulfillment of overall service quality has the most effect, and then efficiency, system availability, privacy in order. Second, as the result of , it shows that all were chosen, so on-line service recovery has a positive effect on overall service quality. Especially responsiveness of overall service quality has the most effect, and then contact, compensation in order. Third, as the result of and , it shows that and all were chosen, so overall service quality has a positive effect on customer satisfaction, customer satisfaction has a positive effect on loyalty intention. Fourth, as the result of and , it shows that and all were chosen, so overall service quality plays a role as the partial mediation between on-line service quality and customer satisfaction, on-line service recovery and customer satisfaction. 5. Conclusion This study measured and analyzed service quality and service recovery of the Web sites that customers made a reservation and issued their air tickets, and by improving customer satisfaction through the result, this study put its final goal to grope how to keep loyalty customers. On the basis of the result of empirical analysis, suggestion points of this study are followed. First, this study regarded E-S-QUAL that measures on-line service quality and E-RecS-QUAL that measures on-line service recovery as variables, so it overcame the limit of existing studies that used modified SERVQUAL to measure service quality of the Web sites. Second, it shows that fulfillment and efficiency of on-line service quality have the most significant effect on overall service quality. Therefore the Web sites of reserving and issuing air tickets should try harder to elevate efficiency and fulfillment. Third, privacy of on-line service quality has the least significant effect on overall service quality, but this may be caused by un-assurance of customers whether the Web sites protect safely their confidential information or not. So they need to notify customers of this fact clearly. Fourth, there are many cases that customers don't recognize the importance of on-line service recovery, but if they would think that On-line service recovery has an effect on customer satisfaction and loyalty intention, as its importance is very significant they should prepare for that. Fifth, because overall service quality has a positive effect on customer satisfaction and loyalty intention, they should try harder to elevate service quality and service recovery of the Web sites of reserving and issuing air tickets to maximize customer satisfaction and to secure loyalty customers. Sixth, it is found that overall service quality plays a role as the partial mediation, but now there are rarely existing studies about this, so there need to be more studies about this.
Recently, the proliferation of mobile devices such as smartphones and tablet personal computers and the development of information communication technologies (ICT) have led to a big trend of a shift from single-channel shopping to multi-channel shopping. With the emergence of a "smart" group of consumers who want to shop in more reasonable and convenient ways, the boundaries apparently dividing online and offline shopping have collapsed and blurred more than ever before. Thus, there is now fierce competition between online and offline channels. Ever since the emergence of online shopping, a major type of multi-channel shopping has been "showrooming," where consumers visit offline stores to examine products before buying them online. However, because of the growing use of smart devices and the counterattack of offline retailers represented by omni-channel marketing strategies, one of the latest huge trends of shopping is "webrooming," where consumers visit online stores to examine products before buying them offline. This has become a threat to online retailers. In this situation, although it is very important to examine the influencing factors for switching from online shopping to webrooming, most prior studies have mainly focused on a single- or multi-channel shopping pattern. Therefore, this study thoroughly investigated the influencing factors on customers switching from online shopping to webrooming in terms of both the "search" and "purchase" processes through the application of a push-pull-mooring (PPM) framework. In order to test the research model, 280 individual samples were gathered from undergraduate and graduate students who had actual experience with webrooming. The results of the structural equation model (SEM) test revealed that the "pull" effect is strongest on the webrooming intention rather than the "push" or "mooring" effects. This proves a significant relationship between "attractiveness of webrooming" and "webrooming intention." In addition, the results showed that both the "perceived risk of online search" and "perceived risk of online purchase" significantly affect "distrust of online shopping." Similarly, both "perceived benefit of multi-channel search" and "perceived benefit of offline purchase" were found to have significant effects on "attractiveness of webrooming" were also found. Furthermore, the results indicated that "online purchase habit" is the only influencing factor that leads to "online shopping lock-in." The theoretical implications of the study are as follows. First, by examining the multi-channel shopping phenomenon from the perspective of "shopping switching" from online shopping to webrooming, this study complements the limits of the "channel switching" perspective, represented by multi-channel freeriding studies that merely focused on customers' channel switching behaviors from one to another. While extant studies with a channel switching perspective have focused on only one type of multi-channel shopping, where consumers just move from one particular channel to different channels, a study with a shopping switching perspective has the advantage of comprehensively investigating how consumers choose and navigate among diverse types of single- or multi-channel shopping alternatives. In this study, only limited shopping switching behavior from online shopping to webrooming was examined; however, the results should explain various phenomena in a more comprehensive manner from the perspective of shopping switching. Second, this study extends the scope of application of the push-pull-mooring framework, which is quite commonly used in marketing research to explain consumers' product switching behaviors. Through the application of this framework, it is hoped that more diverse shopping switching behaviors can be examined in future research. This study can serve a stepping stone for future studies. One of the most important practical implications of the study is that it may help single- and multi-channel retailers develop more specific customer strategies by revealing the influencing factors of webrooming intention from online shopping. For example, online single-channel retailers can ease the distrust of online shopping to prevent consumers from churning by reducing the perceived risk in terms of online search and purchase. On the other hand, offline retailers can develop specific strategies to increase the attractiveness of webrooming by letting customers perceive the benefits of multi-channel search or offline purchase. Although this study focused only on customers switching from online shopping to webrooming, the results can be expanded to various types of shopping switching behaviors embedded in single- and multi-channel shopping environments, such as showrooming and mobile shopping.
Artificial intelligences are changing world. Financial market is also not an exception. Robo-Advisor is actively being developed, making up the weakness of traditional asset allocation methods and replacing the parts that are difficult for the traditional methods. It makes automated investment decisions with artificial intelligence algorithms and is used with various asset allocation models such as mean-variance model, Black-Litterman model and risk parity model. Risk parity model is a typical risk-based asset allocation model which is focused on the volatility of assets. It avoids investment risk structurally. So it has stability in the management of large size fund and it has been widely used in financial field. XGBoost model is a parallel tree-boosting method. It is an optimized gradient boosting model designed to be highly efficient and flexible. It not only makes billions of examples in limited memory environments but is also very fast to learn compared to traditional boosting methods. It is frequently used in various fields of data analysis and has a lot of advantages. So in this study, we propose a new asset allocation model that combines risk parity model and XGBoost machine learning model. This model uses XGBoost to predict the risk of assets and applies the predictive risk to the process of covariance estimation. There are estimated errors between the estimation period and the actual investment period because the optimized asset allocation model estimates the proportion of investments based on historical data. these estimated errors adversely affect the optimized portfolio performance. This study aims to improve the stability and portfolio performance of the model by predicting the volatility of the next investment period and reducing estimated errors of optimized asset allocation model. As a result, it narrows the gap between theory and practice and proposes a more advanced asset allocation model. In this study, we used the Korean stock market price data for a total of 17 years from 2003 to 2019 for the empirical test of the suggested model. The data sets are specifically composed of energy, finance, IT, industrial, material, telecommunication, utility, consumer, health care and staple sectors. We accumulated the value of prediction using moving-window method by 1,000 in-sample and 20 out-of-sample, so we produced a total of 154 rebalancing back-testing results. We analyzed portfolio performance in terms of cumulative rate of return and got a lot of sample data because of long period results. Comparing with traditional risk parity model, this experiment recorded improvements in both cumulative yield and reduction of estimated errors. The total cumulative return is 45.748%, about 5% higher than that of risk parity model and also the estimated errors are reduced in 9 out of 10 industry sectors. The reduction of estimated errors increases stability of the model and makes it easy to apply in practical investment. The results of the experiment showed improvement of portfolio performance by reducing the estimated errors of the optimized asset allocation model. Many financial models and asset allocation models are limited in practical investment because of the most fundamental question of whether the past characteristics of assets will continue into the future in the changing financial market. However, this study not only takes advantage of traditional asset allocation models, but also supplements the limitations of traditional methods and increases stability by predicting the risks of assets with the latest algorithm. There are various studies on parametric estimation methods to reduce the estimated errors in the portfolio optimization. We also suggested a new method to reduce estimated errors in optimized asset allocation model using machine learning. So this study is meaningful in that it proposes an advanced artificial intelligence asset allocation model for the fast-developing financial markets.
This study was performed to investigate the changes of amount of S. typhimurium during cooking processes using pork and japchae (a Korean food which is made from meat, vegetables and noodles), and to support a practical application to develop a hazard analysis critical control point (HACCP) model. The pork was purchased in a retail shop, cut ($0.5\;cm\;{\times}\;10\;cm\;{\times}\;10\;cm$, 25 g), tested for Salmonella contamination (results: negative), inoculated with S. typhimurium ($10^{7}\;CFU/g$), then treated in various conditions related to cooking. Mter thawing for 24 hours in various conditions, the number of S. typhimurium was increased to $10^{10}\;CFU/g$ at a refrigerated temperature ($4~10^{\circ}C$), and to $10^{21}\;CFU/g$ at room temperature ($22~29^{\circ}C$). Mter thawing in a microwave oven for 40 seconds, the number of S. typhimurium increased to $10^{8}\;CFU/g$. During the thawing period, the number of S. typhimurium increased over time. At the refrigerated temperature, the number of the bacteria was $10^{10}\;CFU/g$ after 24 hours, $10^{13}\;CFU/g$ after 48 hours, and $10^{20}\;CFU/g$ after 72 hours. At room temperature the number of bacteria reached $10^{11}\;CFU/g$ in 2 hours, $10^{15}\;CFU/g$ in 4 hours, $10^{16}\;CFU/g$ in 8 hours, $10^{18}\;CFU/g$ in 12 hours, and $10^{21}\;CFU/g$ in 24 hours. Mter cooking in a frying pan (150{\pm}7^{\circ}C$) for 3 minutes, the bacterial count was $10^{16}\;CFU/g$. After cooking in hot water for 20 minutes, the bacterial count was $10^{7}\;CFU/g\;at\;60^{\circ}C,\;10^{6}\;CFU/g\;at\;63^{\circ}C,\;and\;10^{4}\;CFU/g\;at\;65^{\circ}C$. The fried pork was mixed with cooked vegetables, noodles, sesame oil, sesame seeds, and seasonings to make Korean japchae. This process took $10{\pm}2$ minutes. The bacterial count in the japchae increased to $10^{7}\;CFU/g$ from the count of $10^{6}\;CFU/g$ of the fried pork before it was mixed with the other ingredients. These results indicate that the amount of S. typhimurium is effected by various different cooking processes. This study can suggest that pork should be cooked in water at over $65^{\circ}C$ for 20 minutes in order to prevent food poisoning, if the pork is contaminated with S. typhimurium. The presence of S. typhimurium in the raw pork is identified in an HA for japchae, and the primary CCP for japchae is inadequate cooking (cooking method and time/temperature). We need to standardize time-temperature-size and amount of pork in cooking japchae, because pork is usually cooked in ordinary frying pans when we make this food.
As Internet and information technology (IT) continues to develop and evolve, the issue of big data has emerged at the foreground of scholarly and industrial attention. Big data is generally defined as data that exceed the range that can be collected, stored, managed and analyzed by existing conventional information systems and it also refers to the new technologies designed to effectively extract values from such data. With the widespread dissemination of IT systems, continual efforts have been made in various fields of industry such as R&D, manufacturing, and finance to collect and analyze immense quantities of data in order to extract meaningful information and to use this information to solve various problems. Since IT has converged with various industries in many aspects, digital data are now being generated at a remarkably accelerating rate while developments in state-of-the-art technology have led to continual enhancements in system performance. The types of big data that are currently receiving the most attention include information available within companies, such as information on consumer characteristics, information on purchase records, logistics information and log information indicating the usage of products and services by consumers, as well as information accumulated outside companies, such as information on the web search traffic of online users, social network information, and patent information. Among these various types of big data, web searches performed by online users constitute one of the most effective and important sources of information for marketing purposes because consumers search for information on the internet in order to make efficient and rational choices. Recently, Google has provided public access to its information on the web search traffic of online users through a service named Google Trends. Research that uses this web search traffic information to analyze the information search behavior of online users is now receiving much attention in academia and in fields of industry. Studies using web search traffic information can be broadly classified into two fields. The first field consists of empirical demonstrations that show how web search information can be used to forecast social phenomena, the purchasing power of consumers, the outcomes of political elections, etc. The other field focuses on using web search traffic information to observe consumer behavior, identifying the attributes of a product that consumers regard as important or tracking changes on consumers' expectations, for example, but relatively less research has been completed in this field. In particular, to the extent of our knowledge, hardly any studies related to brands have yet attempted to use web search traffic information to analyze the factors that influence consumers' purchasing activities. This study aims to demonstrate that consumers' web search traffic information can be used to derive the relations among brands and the relations between an individual brand and product attributes. When consumers input their search words on the web, they may use a single keyword for the search, but they also often input multiple keywords to seek related information (this is referred to as simultaneous searching). A consumer performs a simultaneous search either to simultaneously compare two product brands to obtain information on their similarities and differences, or to acquire more in-depth information about a specific attribute in a specific brand. Web search traffic information shows that the quantity of simultaneous searches using certain keywords increases when the relation is closer in the consumer's mind and it will be possible to derive the relations between each of the keywords by collecting this relational data and subjecting it to network analysis. Accordingly, this study proposes a method of analyzing how brands are positioned by consumers and what relationships exist between product attributes and an individual brand, using simultaneous search traffic information. It also presents case studies demonstrating the actual application of this method, with a focus on tablets, belonging to innovative product groups.
In recent years, one of the major reasons for the fierce competition amongst firms is that they strive to increase their own market shares and customer acquisition rate in the same market with similar and apparently undifferentiated products in terms of quality and perceived benefit. Because of this change in recent marketing environment, the differentiated after-sales service and diversified promotion strategies have become more important to gain competitive advantage. Price promotion is the favorite strategy that most retailers use to achieve short-term sales increase, induce consumer's brand switch, in troduce new product into market, and so forth. However, if marketers apply or copy an identical price promotion strategy without considering the characteristic differences in product and consumer preference, it will cause serious problems because discounted price itself could make people skeptical about product quality, and the changes of perceived value might appear differently depending on other factors such as consumer involvement or brand attitude. Previous studies showed that price promotion would certainly increase sales, and the discounted price compared to regular price would enhance the consumer's perceived values. On the other hand, discounted price itself could make people depreciate or skeptical about product quality, and reduce the consumers' positivity bias because consumers might be unsure whether the current price promotion is the retailer's best price offer. Moreover, we cannot say that discounted price absolutely enhances the consumer's perceived values regardless of product category and purchase situations. That is, the factors that affect consumers' value perceptions and buying behavior are so diverse in reality that the results of studies on the same dependent variable come out differently depending on what variable was used or how experiment conditions were designed. Majority of previous researches on the effect of price-comparison advertising have used consumers' buying behavior as dependent variable. In order to figure out consumers' buying behavior theoretically, analysis of value perceptions which influence buying intentions is needed. In addition, they did not combined the independent variables such as brand loyalty and price discount rate together. For this reason, this paper tried to examine the moderating effect of brand loyalty on relationship between the different levels of discounting rate and buyers' value perception. And we provided with theoretical and managerial implications that marketers need to consider such variables as product attributes, brand loyalty, and consumer involvement at the same time, and then establish a differentiated pricing strategy case by case in order to enhance consumer's perceived values properl. Three research concepts were used in our study and each concept based on past researches was defined. The perceived acquisition value in this study was defined as the perceived net gains associated with the products or services acquired. That is, the perceived acquisition value of the product will be positively influenced by the benefits buyers believe they are getting by acquiring and using the product, and negatively influenced by the money given up to acquire the product. And the perceived transaction value was defined as the perception of psychological satisfaction or pleasure obtained from taking advantage of the financial terms of the price deal. Lastly, the brand loyalty was defined as favorable attitude towards a purchased product. Thus, a consumer loyal to a brand has an emotional attachment to the brand or firm. Repeat purchasers continue to buy the same brand even though they do not have an emotional attachment to it. We assumed that if the degree of brand loyalty is high, the perceived acquisition value and the perceived transaction value will increase when higher discount rate is provided. But we found that there are no significant differences in values between two different discount rates as a result of empirical analysis. It means that price reduction did not affect consumer's brand choice significantly because the perceived sacrifice decreased only a little, and customers are satisfied with product's benefits when brand loyalty is high. From the result, we confirmed that consumers with high degree of brand loyalty to a specific product are less sensitive to price change. Thus, using price promotion strategy to merely expect sale increase is not recommendable. Instead of discounting price, marketers need to strengthen consumers' brand loyalty and maintain the skimming strategy. On the contrary, when the degree of brand loyalty is low, the perceived acquisition value and the perceived transaction value decreased significantly when higher discount rate is provided. Generally brands that are considered inferior might be able to draw attention away from the quality of the product by making consumers focus more on the sacrifice component of price. But considering the fact that consumers with low degree of brand loyalty are known to be unsatisfied with product's benefits and have relatively negative brand attitude, bigger price reduction offered in experiment condition of this paper made consumers depreciate product's quality and benefit more and more, and consumer's psychological perceived sacrifice increased while perceived values decreased accordingly. We infer that, in the case of inferior brand, a drastic price-cut or frequent price promotion may increase consumers' uncertainty about overall components of product. Therefore, it appears that reinforcing the augmented product such as after-sale service, delivery and giving credit which is one of the levels consisting of product would be more effective in reality. This will be better rather than competing with product that holds high brand loyalty by reducing sale price. Although this study tried to examine the moderating effect of brand loyalty on relationship between the different levels of discounting rate and buyers' value perception, there are several limitations. This study was conducted in controlled conditions where the high involvement product and two different levels of discount rate were applied. Given the presence of low involvement product, when both pieces of information are available, it is likely that the results we have reported here may have been different. Thus, this research results explain only the specific situation. Second, the sample selected in this study was university students in their twenties, so we cannot say that the results are firmly effective to all generations. Future research that manipulates the level of discount along with the consumer involvement might lead to a more robust understanding of the effects various discount rate. And, we used a cellular phone as a product stimulus, so it would be very interesting to analyze the result when the product stimulus is an intangible product such as service. It could be also valuable to analyze whether the change of perceived value affects consumers' final buying behavior positively or negatively.
This study investigated consumer intention to use a location-based mobile shopping service (LBMSS) that integrates cognitive and affective responses. Information relevancy was integrated into pleasure-arousal-dominance (PAD) emotional state model in the present study as a conceptual framework. The results of an online survey of 335 mobile phone users in the U.S. indicated the positive effects of arousal and information relevancy on pleasure. In addition, there was a significant relationship between pleasure and intention to use a LBMSS. However, the relationship between dominance and pleasure was not statistically significant. The results of the present study provides insight to retailers and marketers as to what factors they need to consider to implement location-based mobile shopping services to improve their business performance. Extended Abstract : Location aware technology has expanded the marketer's reach by reducing space and time between a consumer's receipt of advertising and purchase, offering real-time information and coupons to consumers in purchasing situations (Dickenger and Kleijnen, 2008; Malhotra and Malhotra, 2009). LBMSS increases the relevancy of SMS marketing by linking advertisements to a user's location (Bamba and Barnes, 2007; Malhotra and Malhotra, 2009). This study investigated consumer intention to use a location-based mobile shopping service (LBMSS) that integrates cognitive and affective response. The purpose of the study was to examine the relationship among information relevancy and affective variables and their effects on intention to use LBMSS. Thus, information relevancy was integrated into pleasure-arousal-dominance (PAD) model and generated the following hypotheses. Hypothesis 1. There will be a positive influence of arousal concerning LBMSS on pleasure in regard to LBMSS. Hypothesis 2. There will be a positive influence of dominance in LBMSS on pleasure in regard to LBMSS. Hypothesis 3. There will be a positive influence of information relevancy on pleasure in regard to LBMSS. Hypothesis 4. There will be a positive influence of pleasure about LBMSS on intention to use LBMSS. E-mail invitations were sent out to a randomly selected sample of three thousand consumers who are older than 18 years old and mobile phone owners, acquired from an independent marketing research company. An online survey technique was employed utilizing Dillman's (2000) online survey method and follow-ups. A total of 335 valid responses were used for the data analysis in the present study. Before the respondents answer any of the questions, they were told to read a document describing LBMSS. The document included definitions and examples of LBMSS provided by various service providers. After that, they were exposed to a scenario describing the participant as taking a saturday shopping trip to a mall and then receiving a short message from the mall. The short message included new product information and coupons for same day use at participating stores. They then completed a questionnaire containing various questions. To assess arousal, dominance, and pleasure, we adapted and modified scales used in the previous studies in the context of location-based mobile shopping service, each of the five items from Mehrabian and Russell (1974). A total of 15 items were measured on a seven-point bipolar scale. To measure information relevancy, four items were borrowed from Mason et al. (1995). Intention to use LBMSS was captured using two items developed by Blackwell, and Miniard (1995) and one items developed by the authors. Data analyses were conducted using SPSS 19.0 and LISREL 8.72. A total of usable 335 data were obtained after deleting the incomplete responses, which results in a response rate of 11.20%. A little over half of the respondents were male (53.9%) and approximately 60% of respondents were married (57.4%). The mean age of the sample was 29.44 years with a range from 19 to 60 years. In terms of the ethnicity there were European Americans (54.5%), Hispanic American (5.3%), African-American (3.6%), and Asian American (2.9%), respectively. The respondents were highly educated; close to 62.5% of participants in the study reported holding a college degree or its equivalent and 14.5% of the participants had graduate degree. The sample represents all income categories: less than $24,999 (10.8%), $25,000-$49,999 (28.34%), $50,000-$74,999 (13.8%), and $75,000 or more (10.23%). The respondents of the study indicated that they were employed in many occupations. Responses came from all 42 states in the U.S. To identify the dimensions of research constructs, Exploratory Factor Analysis (EFA) using a varimax rotation was conducted. As indicated in table 1, these dimensions: arousal, dominance, relevancy, pleasure, and intention to use, suggested by the EFA, explained 82.29% of the total variance with factor loadings ranged from .74 to .89. As a next step, CFA was conducted to validate the dimensions that were identified from the exploratory factor analysis and to further refine the scale. Table 1 exhibits the results of measurement model analysis and revealed a chi-square of 202.13 with degree-of-freedom of 89 (p =.002), GFI of .93, AGFI = .89, CFI of .99, NFI of .98, which indicates of the evidence of a good model fit to the data (Bagozzi and Yi, 1998; Hair et al., 1998). As table 1 shows, reliability was estimated with Cronbach's alpha and composite reliability (CR) for all multi-item scales. All the values met evidence of satisfactory reliability in multi-item measure for alpha (>.91) and CR (>.80). In addition, we tested the convergent validity of the measure using average variance extracted (AVE) by following recommendations from Fornell and Larcker (1981). The AVE values for the model constructs ranged from .74 through .85, which are higher than the threshold suggested by Fornell and Larcker (1981). To examine discriminant validity of the measure, we again followed the recommendations from Fornell and Larcker (1981). The shared variances between constructs were smaller than the AVE of the research constructs and confirm discriminant validity of the measure. The causal model testing was conducted using LISREL 8.72 with a maximum-likelihood estimation method. Table 2 shows the results of the hypotheses testing. The results for the conceptual model revealed good overall fit for the proposed model. Chi-square was 342.00 (df = 92, p =.000), NFI was .97, NNFI was .97, GFI was .89, AGFI was .83, and RMSEA was .08. All paths in the proposed model received significant statistical support except H2. The paths from arousal to pleasure (H1: ${\ss}$=.70; t = 11.44), from information relevancy to intention to use (H3 ${\ss}$ =.12; t = 2.36), from information relevancy to pleasure (H4 ${\ss}$ =.15; t = 2.86), and pleasure to intention to use (H5: ${\ss}$=.54; t = 9.05) were significant. However, the path from dominance to pleasure was not supported. This study investigated consumer intention to use a location-based mobile shopping service (LBMSS) that integrates cognitive and affective responses. Information relevancy was integrated into pleasure-arousal-dominance (PAD) emotional state model as a conceptual framework. The results of the present study support previous studies indicating that emotional responses as well as cognitive responses have a strong impact on accepting new technology. The findings of this study suggest potential marketing strategies to mobile service developers and retailers who are considering the implementation of LBMSS. It would be rewarding to develop location-based mobile services that integrate information relevancy and which cause positive emotional responses.
Introduction As consumers' purchase behavior change into a rational and practical direction, the discount store industry came to have keen competition along with rapid external growth. Therefore as a solution, distribution businesses are concentrating on developing PB(Private Brand) which can realize differentiation and profitability at the same time. And as improvement in customer loyalty beyond customer satisfaction is effective in surviving in an environment with keen competition, PB is being used as a strategic tool to improve customer loyalty. To improve loyalty among PB users, it is necessary to develop PB by examining properties of a customer group, first of all, quality level perceived by consumers should be met to obtain customer satisfaction and customer trust and consequently induce customer loyalty. To provide results of systematic analysis on relations between antecedents influenced perceived quality and variables affecting customer loyalty, this study proposed a research model based on causal relations verified in prior researches and set 16 hypotheses about relations among 9 theoretical variables. Data was collected from 400 adult customers residing in Seoul and the Metropolitan area and using large scale discount stores, among them, 375 copies were analyzed using SPSS 15.0 and Amos 7.0. The findings of the present study followed as; We ascertained that the higher company reputation, brand reputation, product experience and brand familiarity, the higher perceived quality. The study also examined the higher perceived quality, the higher customer satisfaction, customer trust and customer loyalty. The findings showed that the higher customer satisfaction and customer trust, the higher customer loyalty. As for moderating effects between PB and NB in terms of influences of perceived quality factors on perceived quality, we can ascertain that PB was higher than NB in the influences of company reputation on perceived quality while NB was higher than PB in the influences of brand reputation and brand familiarity on perceived quality. These results of empirical analysis will be useful for those concerned to do marketing activities based on a clearer understanding of antecedents and consecutive factors influenced perceived quality. At last, discussions about academical and managerial implications in these results, we suggested the limitations of this study and the future research directions. Research Model and Hypotheses Test After analyzing if antecedent variables having influence on perceived quality shows any difference between PB and NB in terms of their influences on them, the relation between variables that have influence on customer loyalty was determined as Figure 1. We established 16 hypotheses to test and hypotheses are as follows; H1-1: Perceived price has a positive effect on perceived quality. H1-2: It is expected that PB and NB would have different influence in terms of perceived price on perceived quality. H2-1: Company reputation has a positive effect on perceived quality. H2-2: It is expected that PB and NB would have different influence in terms of company reputation on perceived quality. H3-1: Brand reputation has a positive effect on perceived quality. H3-2: It is expected that PB and NB would have different influence in terms of brand reputation on perceived quality. H4-1: Product experience has a positive effect on perceived quality. H4-2: It is expected that PB and NB would have different influence in terms of product experience on perceived quality. H5-1: Brand familiarity has a positive effect on perceived quality. H5-2: It is expected that PB and NB would have different influence in terms of brand familiarity on perceived quality. H6: Perceived quality has a positive effect on customer satisfaction. H7: Perceived quality has a positive effect on customer trust. H8: Perceived quality has a positive effect on customer loyalty. H9: Customer satisfaction has a positive effect on customer trust. H10: Customer satisfaction has a positive effect on customer loyalty. H11: Customer trust has a positive effect on customer loyalty. Results from analyzing main effects of research model is shown as
, and moderating effects is shown as
. Results This study is designed with 16 research hypotheses, Results from analyzing their main effects show that 9 of 11 hypotheses were supported and other 2 hypotheses were rejected. On the other hand, results from analyzing their moderating effects show that 3 of 5 hypotheses were supported and other 2 hypotheses were rejected. H1-1: (SPC: Standardized Path Coefficient)=-0.04, t-value=-1.04, p>. 05). H1-2: (${\Delta}\chi^2$=1.10, df=1, p> 0.05). H1-1 and H1-2 are rejected, so it is prove that perceived price is not a significant decision variable having influence on perceived quality and there is no significant variable between PB and NB in terms of influence of perceived price on perceived quality. H2-1: (SPC=0.31, t-value=3.74, p<. 001). H2-2: (${\Delta}\chi^2$=3.93, df=1, p< 0.05). H2-1 and H2-2 are supported, so it is proved that company reputation is a significant decision variable having influence on perceived quality and, in terms of influence of company reputation on perceived quality, PB has relatively stronger influence than NB. H3-1: (SPC=0.26, t-value=5.30, p< .001). H3-2: (${\Delta}\chi^2$=16.81, df=1, p< 0.01). H3-1 and H3-2 are supported, so it is proved that brand reputation is a significant decision variable having influence on perceived quality and, in terms of influence of brand reputation on perceived quality, NB has relatively stronger influence than PB. H4-1: (SPC=0.31, t-value=2.65, p< .05). H4-2: (${\Delta}\chi^2$=1.26, df=1, p> 0.05). H4-1 is supported, but H4-2 is rejected, Therefore, it is proved that product experience is a significant decision variable having influence on perceived quality and, on the other hand, there is no significant different between PB and NB in terms of influence of product experience on product quality. H5-1: (SPC=0.24, t-value=3.00, p<. 05). H5-2: (${\Delta}\chi^2$=5.10, df=1, p< 0.05). H5-1 and H5-2 are supported, so it is proved that brand familiarity is a significant decision variable having influence on perceived quality and, in terms of influence of brand familiarity on perceived quality, NB has relatively stronger influence than PB. H6: (SPC=0.91, t-value=19.06, p< .001). H6 is supported, so a fact that customer satisfaction increases as perceived quality increases is proved. H7: (SPC=0.81, t-value=7.44, p<. 001). H7 is supported, so a fact that customer trust increases as perceived quality increases is proved. H8: (SPC=0.57, t-value=7.87, p< .001). H8 is supported, so a fact that customer loyalty increases as perceived quality increases is proved. H9: (SPC=0.08, t-value=0.76, p> .05). H9 is rejected, so it is proved influence of customer satisfaction on customer trust is not significant. H10: (SPC=0.21, t-value=4.34, p< .001). H10 is supported, so a fact that customer loyalty increases as customer satisfaction increases is proved. H11: (SPC=0.40, t-value=5.68, p< .001). H11 is supported, so a fact that customer loyalty increases as customer trust increases is proved. Implications Although most of existing studies have used function, price, brand, design, service, brand name, store name as antecedent variables for perceived quality, this study used different antecedent variables in order to analyze and distinguish purchase group PB and NB through preliminary research. Therefore, this study may be used as preliminary data for a empirical study that is designed to be helpful for practical jobs. Also, this study is made to be easily applied to any practical job because SEM(Structural Equation Modeling), most strongly explaining the relation between observed variable and latent variable, is used for this study. This study suggests a new strategic point that, in order to increase customer loyalty, customer's perceived quality level should satisfied for inducing customer satisfaction, customer trust, and customer loyalty. Therefore, after finding an effective differentiating factors in perceived quality in order to increase customer loyalty through increasing perceived quality, this factor was made to be applied to PB and NB. Because perceived quality factors which is recognized as being important by consumers is different between PB and NB, this study suggests how to efficiently establish marketing strategy by enhancing a factor. Companies have mostly focused on profitability in terms of analyzing customer loyalty, but this study included positive WOM(word of mouth). Hence, this study suggests that it would be helpful for establishing customer loyalty when consumers have cognitive satisfaction and emotional satisfaction together. Limitations This study used variables perceived price, company reputation, brand reputation, product experience, brand familiarity in order to determine whether each constituent factor has different influence on perceived quality between purchase group PB and NB. These characteristic variables are made up on the basis of the preliminary research, but it is expected that more precise research result would be obtained if additional various variables are included in study. This study selected a practical product that is non-durable, low-priced and bestselling product in a discount store through the preliminary research because it can be easily estimated by consumers. Therefore. generalization of study would be more easily obtained if more various product characteristics is included. Regarding a sample used in this study, it was only based on consumers who purchase products in a large-scale discount store located in Seoul and in the capital area. Accordingly, this sample has some geographical limitation, If a study is expanded by including more areas, more representative research results may be produced. Because this study is only designed to analyze consumers who purchase a product in a large-scale discount store, some difference may be found according to characteristics of each business type. In other words, there is certainly some application limitation, so research result from this study may not be applied to other business types. Future research may have fruitful results if it adjusts a variable to each business type.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.