• Title/Summary/Keyword: 실시간 적응학습제어

Search Result 33, Processing Time 0.035 seconds

A study on the PID adaptive position controller using GMDP Neural Network (GMDP 신경망을 이용한 PID 적응 위치 제어기에 관한연구)

  • 추연규;임영도
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1995.10b
    • /
    • pp.258-263
    • /
    • 1995
  • 본 논문은 일반화된 다중 수상돌기 적 (GMDP : Generalized Multi Dendrite Product) 유닛트 신경망을 이용한 PID 적응 위치제어기를 구성하여 직류 서어보 전동기의 위치제어를 실시간 처리 하였다. 제안한 제어기를 위치제어에 적용시켜 실험한 결과 기존의 MLP 신경망 제어기를 이용한 것 보다도 샘플시간을 줄일 수 있다는 장점으로 정밀한 제어 가 가능하다는 것을 확인할 수 있었다. 학습규칙은 기존의 역전파 학습방법이 GMDP 신경 회로망에 적용되었다.

  • PDF

An Adaptive Learning Method of Fuzzy Hypercubes using a Neural Network (신경망을 이용한 퍼지 하이퍼큐브의 적응 학습방법)

  • Jae-Kal, Uk;Choi, Byung-Keol;Min, Suk-Ki;Kang, Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.6 no.4
    • /
    • pp.49-60
    • /
    • 1996
  • The objective of this paper is to develop an adaptive learning method for fuzzy hypercubes using a neural network. An intelligent control system is proposed by exploiting only the merits of a fuzzy logic controller and a neural network, assuming that we can modify in real time the consequential parts of the rulebase with adaptive learning, and that initial fuzzy control rules are established in a temporarily stable region. We choose the structure of fuzzy hypercubes for the fuzzy controller, and utilize the Perceptron learning rule in order to upda1.e the fuzzy control ru1c:s on-line with the output errors. As a result, the effectiveness and the robustness of this intelligent controller are shown with application of the proposed adaptive fuzzy-neuro controller to control of the cart-pole system.

  • PDF

Nonlinear Adaptive PID Controller based on a Cell-mediated Immune Response and a Gradient Descent Learning (세포성 면역 반응과 경사감소학습에 의한 비선형 적응 PID 제어기)

  • Park Jin-Hyun;Lee Tae-Hwan;Choi Young-Kiu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.1
    • /
    • pp.88-95
    • /
    • 2006
  • PID controllers, which have been widely used in industry, have a simple structure and robustness to modeling error. But They we difficult to have uniformly good control performance in system parameters variation or different velocity command. In this paper, we propose a nonlinear adaptive PID controller based on a cell-mediated immune response and a gradient descent learning. This algorithm has a simple structure and robustness to system parameters variation. To verify performances of the proposed nonlinear adaptive PID controller, the speed control of nonlinear DC motor is performed. The simulation results show that the proposed control systems are effective in tracking a command velocity under system parameters variation.

Evolutionary Computation for the Real-Time Adaptive Learning Control(I) (실시간 적응 학습 제어를 위한 진화연산(I))

  • Chang, Sung-Ouk;Lee, Jin-Kul
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.724-729
    • /
    • 2001
  • This paper discusses the composition of the theory of reinforcement learning, which is applied in real-time learning, and evolutionary strategy, which proves its the superiority in the finding of the optimal solution at the off-line learning method. The individuals are reduced in order to learn the evolutionary strategy in real-time, and new method that guarantee the convergence of evolutionary mutations are proposed. It possible to control the control object varied as time changes. As the state value of the control object is generated, applied evolutionary strategy each sampling time because the learning process of an estimation, selection, mutation in real-time. These algorithms can be applied, the people who do not have knowledge about the technical tuning of dynamic systems could design the controller or problems in which the characteristics of the system dynamics are slightly varied as time changes. In the future, studies are needed on the proof of the theory through experiments and the characteristic considerations of the robustness against the outside disturbances.

  • PDF

Evolutionary Computation for the Real-Time Adaptive Learning Control(II) (실시간 적응 학습 제어를 위한 진화연산(II))

  • Chang, Sung-Ouk;Lee, Jin-Kul
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.730-734
    • /
    • 2001
  • In this study in order to confirm the algorithms that are suggested from paper (I) as the experimental result, as the applied results of the hydraulic servo system are very strong a non-linearity of the fluid in the computer simulation, the real-time adaptive learning control algorithms is validated. The evolutionary strategy has characteristics that are automatically. adjusted in search regions with natural competition among many individuals. The error that is generated from the dynamic system is applied to the mutation equation. Competitive individuals are reduced with automatic adjustments of the search region in accord with the error. In this paper, the individual parents and offspring can be reduced in order to apply evolutionary algorithms in real-time as the description of the paper (I). The possibility of a new approaching algorithm that is suggested from the computer simulation of the paper (I) would be proved as the verification of a real-time test and the consideration its influence from the actual experiment.

  • PDF

The Self-tuning PID Control Based on Real-time Adaptive Learning Evolutionary Algorithm (실시간 적응 학습 진화 알고리듬을 이용한 자기 동조 PID 제어)

  • Chang, Sung-Ouk;Lee, Jin-Kul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.9
    • /
    • pp.1463-1468
    • /
    • 2003
  • This paper presented the real-time self-tuning learning control based on evolutionary computation, which proves its superiority in finding of the optimal solution at the off-line learning method. The individuals of the populations are reduced in order to learn the evolutionary strategy in real-time, and new method that guarantee the convergence of evolutionary mutations is proposed. It is possible to control the control object slightly varied as time changes. As the state value of the control object is generated, evolutionary strategy is applied each sampling time because the learning process of an estimation, selection, mutation is done in real-time. These algorithms can be applied; the people who do not have knowledge about the technical tuning of dynamic systems could design the controller or problems in which the characteristics of the system dynamics are slightly varied as time changes.

A controller Design using Immune Feedback Mechanism (인체 면역 피드백 메카니즘을 활용한 제어기 설계)

  • Park, Jin-Hyun;Kim, Hyun-Duck;Choi, Young-Kiu
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.701-704
    • /
    • 2005
  • PID controllers, which have been widely used in industry, have a simple structure and robustness to modeling error. But They are difficult to have uniformly good control performance in system parameters variation or different velocity command. In this paper, we propose a nonlinear adaptive PID controller based on a cell-mediated immune response and a gradient descent learning. This algorithm has a simple structure and robustness to system parameters variation. To verify performances of the proposed nonlinear adaptive PID controller, the speed control of nonlinear DC motor is performed. The simulation results show that the proposed control systems are effective in tracking a command velocity under system parameters variation.

  • PDF

Temperature Control by On-line CFCM-based Adaptive Neuro-Fuzzy System (온 라인 CFCM 기반 적응 뉴로-퍼지 시스템에 의한 온도제어)

  • 윤기후;곽근창
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.39 no.4
    • /
    • pp.414-422
    • /
    • 2002
  • In this paper, we propose a new method of adaptive neuro-fuzzy control using CFCM(Conditional Fuzzy c-means) clustering and fuzzy equalization method to deal with adaptive control problem. First, in the off-line design, CFCM clustering performs structure identification of adaptive neuro-fuzzy control with the homogeneous properties of the given input and output data. The parameter identification are established by hybrid learning using back-propagation algorithm and RLSE(Recursive Least Square Estimate). In the on-line design, the premise and consequent parameters are tuned to RLSE with forgetting factor due to a characteristic of time variant. Finally, we applied the proposed method to the water temperature control system and obtained better results than previous works such as fuzzy control.

Design of PID Controller with Adaptive Neural Network Compensator for Formation Control of Mobile Robots (이동 로봇의 군집 제어를 위한 PID 제어기의 적응 신경 회로망 보상기 설계)

  • Kim, Yong-Baek;Park, Jin-Hyun;Choi, Young-Kiu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.3
    • /
    • pp.503-509
    • /
    • 2014
  • In this paper, a PID controller with adaptive neural network compensator is proposed to control the formations of mobile robot. The control system is composed of a kinematic controller based on the leader-following robot and dynamic controller for considering the dynamics of the mobile robot. The dynamic controller is constituted by a PID controller and the adaptive neural network compensator for improving the performance and compensating the change in dynamic characteristics. Simulation results show the performance of the PID controller and the neural network compensator for the circular trajectory and linear trajectory. And it is verified that by improving the performance of a PID controller via the adaptive neural network compensator, the following robot's tracking performance is improved.

Maximum Torque Control of IPMSM with Adoptive Leaning Fuzzy-Neural Network (적응학습 퍼지-신경회로망에 의한 IPMSM의 최대토크 제어)

  • Chung, Dong-Hwa;Ko, Jae-Sub;Choi, Jung-Sik
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.5
    • /
    • pp.32-43
    • /
    • 2007
  • Interior permanent magnet synchronous motor(IPMSM) has become a popular choice in electric vehicle applications, due to their excellent power to weight ratio. This paper proposes maximum torque control of IPMSM drive using adaptive learning fuzzy neural network and artificial neural network. This control method is applicable over the entire speed range which considered the limits of the inverter's current and voltage rated value. This paper proposes speed control of IPMSM using adaptive learning fuzzy neural network and estimation of speed using artificial neural network. The back propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. The proposed control algorithm is applied to IPMSM drive system controlled adaptive learning fuzzy neural network and artificial neural network, the operating characteristics controlled by maximum torque control are examined in detail. Also, this paper proposes the analysis results to verify the effectiveness of the adaptive learning fuzzy neural network and artificial neural network.