• Title/Summary/Keyword: 실시간 경로계획

Search Result 102, Processing Time 0.031 seconds

Path Planning of Autonomous Mobile Robots Based on a Probability Map (확률지도를 이용한 자율이동로봇의 경로계획)

  • 임종환;조동우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.4
    • /
    • pp.675-683
    • /
    • 1992
  • Mapping and navigation system based on certainty grids for an autonomous mobile robt operating in unknown and unstructured environment is described. The system uses sonar range data to build a map of robot's surroundings. The range data from sonar sensor are integrated into a probability map that is composed of two dimensional grids which contain the probabilities of being occupied by the objects in the environment. A Bayesian model is used to estimate the uncertainty of the sensor information and to update the existing probability map with new range data. The resulting two dimensional map is used for path planning and navigation. In this paper, the Bayesian updating model which was successfully simulated in our earlier work is implemented on a mobile robot and is shown to be valid in the real world through experiment. This paper also proposes a technique for reducing for reducing specular reflection problem of sonar system which seriousely deteriorates the map quality, and a new path planning method based on weighted distance, which enables the robot to efficiently navigate in an unknown area.

A Study on Bicycle Route Selection Using Optimal Path Search (최적 경로 탐색을 이용한 자전거 경로 선정에 관한 연구)

  • Baik, Seung Heon;Han, Dong Yeob
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.5
    • /
    • pp.425-433
    • /
    • 2012
  • Dijkstra's algorithm is one of well-known methods to find shortest paths over a network. However, more research on $A^*$ algorithm is necessary to discover the shortest route to a goal point with the heuristic information rather than Dijkstra's algorithm which aims to find a path considering only the shortest distance to any point for an optimal path search. Therefore, in this paper, we compared Dijkstra's algorithm and $A^*$ algorithm for bicycle route selection. For this purpose, the horizontal distance according to slope angle and average speed were calculated based on factors which influence bicycle route selection. And bicycle routes were selected considering the shortest distance or time-dependent shortest path using Dijkstra's or $A^*$ algorithm. The result indicated that the $A^*$ algorithm performs faster than Dijkstra's algorithm on processing time in large study areas. For the future, optimal path selection algorithm can be used for bicycle route plan or a real-time mobile services.

표면 분석법을 이용한 경질 3가 크롬 도금 공정 변수 간 상관도 분석

  • Lee, Jong-Il;Lee, Ju-Yeol;Lee, Man
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2009.05a
    • /
    • pp.154-154
    • /
    • 2009
  • 경질 3가 크롬 도금액은 내적인 구성 조성물의 화학비나, 외적인 온도, 시간 등 여러 가지 실험인자들의 복잡한 작용으로 인해 어떤 인자가 어떠한 작용에 상호 영향을 미치는지 파악하기가 쉽지 않다. 통계 프로그램을 사용하여 실험계획법을 작성하고, 측정된 반응치료로부터 분석을 실시하여 최적경사경로를 도출하였다. 또한, 잔차분석과 호감도 함수를 이용한 최적화가 진행되었다.

  • PDF

Autonomous Flight System of UAV through Global and Local Path Generation (전역 및 지역 경로 생성을 통한 무인항공기 자율비행 시스템 연구)

  • Ko, Ha-Yoon;Baek, Joong-Hwan;Choi, Hyung-Sik
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.3
    • /
    • pp.15-22
    • /
    • 2019
  • In this paper, a global and local flight path system for autonomous flight of the UAV is proposed. The overall system is based on the ROS robot operating system. The UAV in-built computer detects obstacles through 2-D Lidar and generates real-time local path and global path based on VFH and Modified $RRT^*$-Smart, respectively. Additionally, a movement command is issued based on the generated path on the UAV flight controller. The ground station computer receives the obstacle information and generates a 2-D SLAM map, transmits the destination point to the embedded computer, and manages the state of the UAV. The autonomous UAV flight system of the is verified through a simulator and actual flight.

Federated Learning modeling for defense against GPS Spoofing in UAV-based Disaster Monitoring Systems (UAV 기반 재난 재해 감시 시스템에서 GPS 스푸핑 방지를 위한 연합학습 모델링)

  • Kim, DongHee;Doh, InShil;Chae, KiJoon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.05a
    • /
    • pp.198-201
    • /
    • 2021
  • 무인 항공기(UAV, Unmanned Aerial Vehicles)는 높은 기동성을 가지며 설치 비용이 저렴하다는 이점이 있어 홍수, 지진 등의 재난 재해 감시 시스템에 이용되고 있다. 재난 재해 감시 시스템에서 UAV는 지상에 위치한 사물인터넷(IoT, Internet of Things) 기기로부터 데이터를 수집하는 임무를 수행하기 위해 계획된 항로를 따라 비행한다. 이때 UAV가 정상 경로로 비행하기 위해서는 실시간으로 GPS 위치 확인이 가능해야 한다. 만일 UAV가 계산한 현재 위치의 GPS 정보가 잘못될 경우 비행경로에 대한 통제권을 상실하여 임무 수행을 완료하지 못하는 결과가 초래될 수 있다는 취약점이 존재한다. 이러한 취약점으로 인해 UAV는 공격자가 악의적으로 거짓 GPS 위치 신호를 전송하는GPS 스푸핑(Spoofing) 공격에 쉽게 노출된다. 본 논문에서는 신뢰할 수 있는 시스템을 구축하기 위해 지상에 위치한 기기가 송신하는 신호의 세기와 GPS 정보를 이용하여 UAV에 GPS 스푸핑 공격 여부를 탐지하고 공격당한 UAV가 경로를 이탈하지 않도록 대응하기 위해 연합학습(Federated Learning)을 이용하는 방안을 제안한다.

Study on the construction and development of TAGO(Transport Advice on GOing anywhere)system (실시간 대중교통 종합 환승정보(TAGO) 구축 및 발전방향)

  • Moon, Hak-Yong;Byun, Sang-Chol;Ryu, Eun-Su;Han, Dae-Chol
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1046-1047
    • /
    • 2008
  • 실시간 대중교통 종합 환승정보(TAGO)시스템은 대중교통 이용자 중심의 서비스제공을 목적으로 교통 수단간 환승 정보를 제공하고 있다. TAGO는 항공, 철도, 버스(시외/시내/고속), 지하철 등 대중교통 뿐 아니라 자가용, 자전거 이용자의 환승을 고려한 정적/동적 운행정보, 소통 정보를 연계하여 통합하고, 네비게이션 서비스, 지역정보 서비스, 돌발 상황, 날씨 정보, 통계 정보를 인터넷 TAGO 홈페이지(www.tago.go,kr)와 환승 지점에서의 현장안내장비(Kiosk, PDP)를 통해 제공하고 있다. 현재 TAGO는 3차 사업이 진행 중이며 전국 단위 장거리 교통수단과 지역내 단거리 교통수단의 교통정보를 연계하여 효율적인 환승정보를 제공하여 대중교통 이용 활성화에 기여하고 있다. 미래의 TAGO 시스템은 유비쿼터스 시대의 신개념 교통정보 제공을 위한 확장성을 고려하여 서비스 범위를 확대하며, 다양한 매체를 통해 전국 어느곳에서든 출발지부터 목적지까지 교통수단의 선택, 경로안내, 환승정보, 지역정보 등을 제공할 계획이다.

  • PDF

Development of Multi-agent Based Deadlock-Free AGV Simulator for Material Handling System (자재 취급 시스템을 위한 다중 에이전트 기반의 교착상태에 자유로운 AGV 시뮬레이터 개발)

  • Lee, Jae-Yong;Seo, Yoon-Ho
    • Journal of the Korea Society for Simulation
    • /
    • v.17 no.2
    • /
    • pp.91-103
    • /
    • 2008
  • In order to simulate the behavior of automated manufacturing systems, the performance of material handling systems should be measured dynamically. Multi-Agent technology could be well adapted for the development of simulator for distributed and intelligent manufacture systems. A multi-agent system is composed of one coordination agent and multiple application agents. Issues in AGVS simulator can be classified by the set-up and operating problems. Decisions on the number of vehicles, bi- or uni-directional guide-path, etc. are fallen into the set-up problem category, while deadlock tree algorithm and conflict resolution are in operating problem. In this paper, a multi-agent based deadlock-free simulator for automated guided vehicle system(AGVS) are proposed through the use of multi-agent technologies and the development of deadlock-free algorithm. In this AGVS simulator proposed, well-known Floyd algorithm is used to create AGVS Guide path, through which AGVS move. Also, AGVs avoid vehicle conflict and deadlock using check path algorithm. And Moving vehicle agents are operated in real-time control by coordination agent. AGV position is dynamically calculated based on the concept of rolling time horizon. Simulator receives and presents operating information of vehicle in AGVS Gaunt chart. The performance of the proposed algorithm and developed simulator based on multi-agent are validated through set of experiments.

  • PDF

2D Spatial-Map Construction for Workers Identification and Avoidance of AGV (AGV의 작업자 식별 및 회피를 위한 2D 공간 지도 구성)

  • Ko, Jung-Hwan
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.9
    • /
    • pp.347-352
    • /
    • 2012
  • In this paper, an 2D spatial-map construction for workers identification and avoidance of AGV using the detection scheme of the spatial coordinates based on stereo camera is proposed. In the proposed system, face area of a moving person is detected from a left image among the stereo image pairs by using the YCbCr color model and its center coordinates are computed by using the centroid method and then using these data, the stereo camera embedded on the mobile robot can be controlled for tracking the moving target in real-time. Moreover, using the disparity map obtained from the left and right images captured by the tracking-controlled stereo camera system and the perspective transformation between a 3-D scene and an image plane, depth map can be detected. From some experiments on AGV driving with 240 frames of the stereo images, it is analyzed that error ratio between the calculated and measured values of the worker's width is found to be very low value of 2.19% and 1.52% on average.

Minimum Travel Time Paths for ATIS in Urban Road Networks Using Genetic Algorithms (유전자 알고리즘을 이용한 도시도로망에서의 첨단 여행자 정보시스템(ATIS) 운영계획)

  • 장인성;문형수
    • Journal of Korean Society of Transportation
    • /
    • v.19 no.4
    • /
    • pp.85-96
    • /
    • 2001
  • This paper discusses the problem of finding the Origin-Destination(O-D) shortest path in urban road networks that have variable special qualifies such as time windows for passing as well as geometrical special qualities such as U-turn and left-turn prohibition. The focus of this paper is motivated by the problem of finding minimum travel time paths for an advanced traveler information system (ATIS) in the context of intelligent transportation system(ITS) application. The transportation network with variable and geometrical special qualities is a more realistic representation of the urban road network in the real word. But, the traditional and existing shortest path algorithms can not search practical shortest path that variable special quality is reflected. This paper presents a shortest path algorithm which can search reasonable shortest path information for the urban ATIS application within a real time. The algorithm is based on genetic algorithm(GA). The high performance of the proposed algorithm is demonstrated by computer simulations.

  • PDF

Design and Implementation of Interface System for Swarm USVs Simulation Based on Hybrid Mission Planning (하이브리드형 임무계획을 고려한 군집 무인수상정 시뮬레이션 시스템의 연동 인터페이스 설계 및 구현)

  • Park, Hee-Mun;Joo, Hak-Jong;Seo, Kyung-Min;Choi, Young Kyu
    • Journal of the Korea Society for Simulation
    • /
    • v.31 no.3
    • /
    • pp.1-10
    • /
    • 2022
  • Defense fields widely operate unmanned systems to lower vulnerability and enhance combat effectiveness. In the navy, swarm unmanned surface vehicles(USVs) form a cluster within communication range, share situational awareness information among the USVs, and cooperate with them to conduct military missions. This paper proposes an interface system, i.e., Interface Adapter System(IAS), to achieve inter-USV and intra-USV interoperability. We focus on the mission planning subsystem(MPS) for interoperability, which is the core subsystem of the USV to decide courses of action such as automatic path generation and weapon assignments. The central role of the proposed system is to exchange interface data between MPSs and other subsystems in real-time. To this end, we analyzed the operational requirements of the MPS and identified interface messages. Then we developed the IAS using the distributed real-time middleware. As experiments, we conducted several integration tests at swarm USVs simulation environment and measured delay time and loss ratio of interface messages. We expect that the proposed IAS successfully provides bridge roles between the mission planning system and other subsystems.