• Title/Summary/Keyword: 실시간모니터링

Search Result 2,559, Processing Time 0.033 seconds

Comparative Assessment of Linear Regression and Machine Learning for Analyzing the Spatial Distribution of Ground-level NO2 Concentrations: A Case Study for Seoul, Korea (서울 지역 지상 NO2 농도 공간 분포 분석을 위한 회귀 모델 및 기계학습 기법 비교)

  • Kang, Eunjin;Yoo, Cheolhee;Shin, Yeji;Cho, Dongjin;Im, Jungho
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_1
    • /
    • pp.1739-1756
    • /
    • 2021
  • Atmospheric nitrogen dioxide (NO2) is mainly caused by anthropogenic emissions. It contributes to the formation of secondary pollutants and ozone through chemical reactions, and adversely affects human health. Although ground stations to monitor NO2 concentrations in real time are operated in Korea, they have a limitation that it is difficult to analyze the spatial distribution of NO2 concentrations, especially over the areas with no stations. Therefore, this study conducted a comparative experiment of spatial interpolation of NO2 concentrations based on two linear-regression methods(i.e., multi linear regression (MLR), and regression kriging (RK)), and two machine learning approaches (i.e., random forest (RF), and support vector regression (SVR)) for the year of 2020. Four approaches were compared using leave-one-out-cross validation (LOOCV). The daily LOOCV results showed that MLR, RK, and SVR produced the average daily index of agreement (IOA) of 0.57, which was higher than that of RF (0.50). The average daily normalized root mean square error of RK was 0.9483%, which was slightly lower than those of the other models. MLR, RK and SVR showed similar seasonal distribution patterns, and the dynamic range of the resultant NO2 concentrations from these three models was similar while that from RF was relatively small. The multivariate linear regression approaches are expected to be a promising method for spatial interpolation of ground-level NO2 concentrations and other parameters in urban areas.

A Study on the Evaluation of Nepal's Inclusive Business Solution: Focusing on the Application of OECD DAC Evaluation Criteria (네팔의 포용적 비즈니스 프로그램 평가에 관한 연구: 경제협력개발기구 개발원조위원회 평가기준 적용을 중심으로)

  • Kim, Yeon-Hong;Lee, Sung-Soon
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.4
    • /
    • pp.177-192
    • /
    • 2021
  • The Development Assistance Committee of the Organization for Economic Cooperation and Development discusses the reorganization of the five evaluation criteria of the Public Development Assistance Committee, which are used internationally, and the five evaluation criteria including adequacy, efficiency, effectiveness, impact, and sustainability when assessing public development assistance in 1991. This study is to derive alternatives by applying the evaluation criteria of the Development Assistance Committee of the Organization for Economic Cooperation and Development in the evaluation of the inclusive business program being implemented in Nepal since 2019. As a result of the study, the adequacy of Nepal's inclusive business program was consistent with continuous employment and job creation for vulnerable groups such as disabled and orphan women. Efficiency can be said to be efficient in that processes such as work order and work confirmation are made with an electronic management tool, and delivery of the result is transmitted online, saving time and cost compared to other industries. The effectiveness of this project can be said to be an effective program in that it provides high-quality jobs such as providing specialized computer graphics education for the vulnerable, such as disabled and orphan women in Nepal, and hiring graduates as employees. Sustainability is the point that KOICA's inclusive business program has enabled vulnerable groups in the existing fields of agriculture and manufacturing to engage in the computer graphics industry, and the scalability of movies, characters, education businesses, and role models in other countries.However, considering that the scale of public development assistance will continue to increase in the future, it is necessary to establish a systematic monitoring system and a recirculation system so that the project between the donor and recipient countries can continue.

Evaluation of the Accuracy and usability of Trigger mode in Respiratory Gated Radiation Therapy (호흡동조방사선치료를 위한 Trigger mode 투시영상 획득 시 호흡 속도에 따른 정확성 평가 - Phantom Study)

  • Park, je wan;Kim, min su;Um, ki cheon;Choi, seong hoon;Song, heung kwon;Yoon, in ha
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.33
    • /
    • pp.25-33
    • /
    • 2021
  • Purpose : The purpose of this study is to evaluate the accuracy and usefulness of the Trigger mode for the Respiratory Gated Radiation Therapy (RGRT) Materials and methods : A QUASAR respiratory phantom that inserted a 3 mm fiducial marker (a gold marker) was used to estimate the accuracy of the Trigger mode. And the 20 bpm was used as reference respiration rate in this study. The marker that placed at the center of the phantom was contoured, and the lower threshold of a gating window was fixed at 2.0 mm using an OBI with Truebeam STxTM. The upper threshold was measured every 0.5 mm from 1.0 mm to 3.0 mm. The respiration rates were changed every 10 bpm from 10 bpm to 60 bpm. We repeatedly measured five times to check the error rate of the trigger mode in the same condition. Result : The differences of a distance from a peak phase to upper threshold, 1.0 to 3.0 mm at a 20 bpm as a reference for 3 days in a row were 0.68±0.05 mm, 0.91±0.03 mm, 1.23±0.03 mm, 1.42±0.04 mm, and 1.66±0.06 mm, respectively. Measurement result of changes in respiratory rate compared to baseline respiratory rate in maximum absolute difference. The coefficient of determination (R2) to estimate the correlation between the respiration velocity and variation of absolute difference was on average 0.838, 0.887, 0.770, 0.850, and 0.906. The p-values of all the variables were below 0.05. Conclusion : Using Trigger mode during respiratory gated radiation therapy (RGRT), accuracy and usefulness of trigger mode at reference breathing rate were confirmed. However, inaccuracies depending on the rate of breathing it could be uncertain in case of respiration rate is faster than 20 bpm as a standard respiration rate compared to slower than 20 bpm. Consequently, when conducting a RGRT using the trigger mode, real time monitoring is required with well educated respiration.

A Study on the Use of Scientific Investigation Equipment to Support Decision-making of the Resident Evacuation in the Event of a Chemical Accident (화학사고 발생에 따른 주민대피 의사결정 지원을 위한 과학조사장비 활용방안 연구)

  • Oh, Joo-Yeon;Lee, Tae Wook;Cho, Kuk
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_3
    • /
    • pp.1817-1826
    • /
    • 2022
  • After the hydrogen fluoride leak in Gumi in 2012, the government has been systemizing the disaster management system, such as responding to and managing chemical accidents. In particular, the Ministry of the Interior and Safety (MOIS) is in charge of evacuation of residents following chemical accidents based on the Framework Act on Management of Disaster and Safety. In this study, an application plan was presented to support and utilize the decision-making support for evacuation of residents after a chemical accident using the chemical accident investigation equipment of the National Disaster Management Research Institute (NDMI). In the equipment operation system for scientific information collection due to chemical accidents, the roles and purpose of use of long/short distance measurement equipment were presented according to regular and emergency situations. Using the data acquired through long/short distance measurement equipment, it can be used as basic data for resident evacuation decision-making by monitoring whether chemicals are detected in an emergency and managing data on detected substances by company in a regular situation. As a result of measuring chemical substances in order to verify on-site usability by equipment only for the regular operation system, it was confirmed that real-time detection of chemical substances is possible with long distance measuring equipment. In addition, it was confirmed that it was necessary to check the measurable distance and range of the equipment in the future. In the case of short distance measurement equipment, hydrocarbon-based substances were mainly detected, and it was confirmed that it was measured at a higher level in Ulsan-Mipo National Industrial Complex than in Onsan National Industrial Complex. It is expected that it can be used as basic data to support decision-making in the event of chemical accidents through continuous data construction in the future.

Development and Performance Evaluation of Multi-sensor Module for Use in Disaster Sites of Mobile Robot (조사로봇의 재난현장 활용을 위한 다중센서모듈 개발 및 성능평가에 관한 연구)

  • Jung, Yonghan;Hong, Junwooh;Han, Soohee;Shin, Dongyoon;Lim, Eontaek;Kim, Seongsam
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_3
    • /
    • pp.1827-1836
    • /
    • 2022
  • Disasters that occur unexpectedly are difficult to predict. In addition, the scale and damage are increasing compared to the past. Sometimes one disaster can develop into another disaster. Among the four stages of disaster management, search and rescue are carried out in the response stage when an emergency occurs. Therefore, personnel such as firefighters who are put into the scene are put in at a lot of risk. In this respect, in the initial response process at the disaster site, robots are a technology with high potential to reduce damage to human life and property. In addition, Light Detection And Ranging (LiDAR) can acquire a relatively wide range of 3D information using a laser. Due to its high accuracy and precision, it is a very useful sensor when considering the characteristics of a disaster site. Therefore, in this study, development and experiments were conducted so that the robot could perform real-time monitoring at the disaster site. Multi-sensor module was developed by combining LiDAR, Inertial Measurement Unit (IMU) sensor, and computing board. Then, this module was mounted on the robot, and a customized Simultaneous Localization and Mapping (SLAM) algorithm was developed. A method for stably mounting a multi-sensor module to a robot to maintain optimal accuracy at disaster sites was studied. And to check the performance of the module, SLAM was tested inside the disaster building, and various SLAM algorithms and distance comparisons were performed. As a result, PackSLAM developed in this study showed lower error compared to other algorithms, showing the possibility of application in disaster sites. In the future, in order to further enhance usability at disaster sites, various experiments will be conducted by establishing a rough terrain environment with many obstacles.

Observation of Methane Flux in Rice Paddies Using a Portable Gas Analyzer and an Automatic Opening/Closing Chamber (휴대용 기체분석기와 자동 개폐 챔버를 활용한 벼논에서의 메탄 플럭스 관측)

  • Sung-Won Choi;Minseok Kang;Jongho Kim;Seungwon Sohn;Sungsik Cho;Juhan Park
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.4
    • /
    • pp.436-445
    • /
    • 2023
  • Methane (CH4) emissions from rice paddies are mainly observed using the closed chamber method or the eddy covariance method. In this study, a new observation technique combining a portable gas analyzer (Model LI-7810, LI-COR, Inc., USA) and an automatic opening/closing chamber (Model Smart Chamber, LI-COR, Inc., USA) was introduced based on the strengths and weaknesses of the existing measurement methods. A cylindrical collar was manufactured according to the maximum growth height of rice and used as an auxiliary measurement tool. All types of measured data can be monitored in real time, and CH4 flux is also calculated simultaneously during the measurement. After the measurement is completed, all the related data can be checked using the software called 'SoilFluxPro'. The biggest advantage of the new observation technique is that time-series changes in greenhouse gas concentrations can be immediately confirmed in the field. It can also be applied to small areas with various treatment conditions, and it is simpler to use and requires less effort for installation and maintenance than the eddy covariance system. However, there are also disadvantages in that the observation system is still expensive, requires specialized knowledge to operate, and requires a lot of manpower to install multiple collars in various observation areas and travel around them to take measurements. It is expected that the new observation technique can make a significant contribution to understanding the CH4 emission pathways from rice paddies and quantifying the emissions from those pathways.

Detection of Wildfire Burned Areas in California Using Deep Learning and Landsat 8 Images (딥러닝과 Landsat 8 영상을 이용한 캘리포니아 산불 피해지 탐지)

  • Youngmin Seo;Youjeong Youn;Seoyeon Kim;Jonggu Kang;Yemin Jeong;Soyeon Choi;Yungyo Im;Yangwon Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1413-1425
    • /
    • 2023
  • The increasing frequency of wildfires due to climate change is causing extreme loss of life and property. They cause loss of vegetation and affect ecosystem changes depending on their intensity and occurrence. Ecosystem changes, in turn, affect wildfire occurrence, causing secondary damage. Thus, accurate estimation of the areas affected by wildfires is fundamental. Satellite remote sensing is used for forest fire detection because it can rapidly acquire topographic and meteorological information about the affected area after forest fires. In addition, deep learning algorithms such as convolutional neural networks (CNN) and transformer models show high performance for more accurate monitoring of fire-burnt regions. To date, the application of deep learning models has been limited, and there is a scarcity of reports providing quantitative performance evaluations for practical field utilization. Hence, this study emphasizes a comparative analysis, exploring performance enhancements achieved through both model selection and data design. This study examined deep learning models for detecting wildfire-damaged areas using Landsat 8 satellite images in California. Also, we conducted a comprehensive comparison and analysis of the detection performance of multiple models, such as U-Net and High-Resolution Network-Object Contextual Representation (HRNet-OCR). Wildfire-related spectral indices such as normalized difference vegetation index (NDVI) and normalized burn ratio (NBR) were used as input channels for the deep learning models to reflect the degree of vegetation cover and surface moisture content. As a result, the mean intersection over union (mIoU) was 0.831 for U-Net and 0.848 for HRNet-OCR, showing high segmentation performance. The inclusion of spectral indices alongside the base wavelength bands resulted in increased metric values for all combinations, affirming that the augmentation of input data with spectral indices contributes to the refinement of pixels. This study can be applied to other satellite images to build a recovery strategy for fire-burnt areas.

A Case Study on the Effective Liquid Manure Treatment System in Pig Farms (양돈농가의 돈분뇨 액비화 처리 우수사례 실태조사)

  • Kim, Soo-Ryang;Jeon, Sang-Joon;Hong, In-Gi;Kim, Dong-Kyun;Lee, Myung-Gyu
    • Journal of Animal Environmental Science
    • /
    • v.18 no.2
    • /
    • pp.99-110
    • /
    • 2012
  • The purpose of the study is to collect basis data for to establish standard administrative processes of liquid fertilizer treatment. From this survey we could make out the key point of each step through a case of effective liquid manure treatment system in pig house. It is divided into six step; 1. piggery slurry management step, 2. Solid-liquid separation step, 3. liquid fertilizer treatment (aeration) step, 4. liquid fertilizer treatment (microorganism, recirculation and internal return) step, 5. liquid fertilizer treatment (completion) step, 6. land application step. From now on, standardization process of liquid manure treatment technologies need to be develop based on the six steps process.

A Study of Anomaly Detection for ICT Infrastructure using Conditional Multimodal Autoencoder (ICT 인프라 이상탐지를 위한 조건부 멀티모달 오토인코더에 관한 연구)

  • Shin, Byungjin;Lee, Jonghoon;Han, Sangjin;Park, Choong-Shik
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.3
    • /
    • pp.57-73
    • /
    • 2021
  • Maintenance and prevention of failure through anomaly detection of ICT infrastructure is becoming important. System monitoring data is multidimensional time series data. When we deal with multidimensional time series data, we have difficulty in considering both characteristics of multidimensional data and characteristics of time series data. When dealing with multidimensional data, correlation between variables should be considered. Existing methods such as probability and linear base, distance base, etc. are degraded due to limitations called the curse of dimensions. In addition, time series data is preprocessed by applying sliding window technique and time series decomposition for self-correlation analysis. These techniques are the cause of increasing the dimension of data, so it is necessary to supplement them. The anomaly detection field is an old research field, and statistical methods and regression analysis were used in the early days. Currently, there are active studies to apply machine learning and artificial neural network technology to this field. Statistically based methods are difficult to apply when data is non-homogeneous, and do not detect local outliers well. The regression analysis method compares the predictive value and the actual value after learning the regression formula based on the parametric statistics and it detects abnormality. Anomaly detection using regression analysis has the disadvantage that the performance is lowered when the model is not solid and the noise or outliers of the data are included. There is a restriction that learning data with noise or outliers should be used. The autoencoder using artificial neural networks is learned to output as similar as possible to input data. It has many advantages compared to existing probability and linear model, cluster analysis, and map learning. It can be applied to data that does not satisfy probability distribution or linear assumption. In addition, it is possible to learn non-mapping without label data for teaching. However, there is a limitation of local outlier identification of multidimensional data in anomaly detection, and there is a problem that the dimension of data is greatly increased due to the characteristics of time series data. In this study, we propose a CMAE (Conditional Multimodal Autoencoder) that enhances the performance of anomaly detection by considering local outliers and time series characteristics. First, we applied Multimodal Autoencoder (MAE) to improve the limitations of local outlier identification of multidimensional data. Multimodals are commonly used to learn different types of inputs, such as voice and image. The different modal shares the bottleneck effect of Autoencoder and it learns correlation. In addition, CAE (Conditional Autoencoder) was used to learn the characteristics of time series data effectively without increasing the dimension of data. In general, conditional input mainly uses category variables, but in this study, time was used as a condition to learn periodicity. The CMAE model proposed in this paper was verified by comparing with the Unimodal Autoencoder (UAE) and Multi-modal Autoencoder (MAE). The restoration performance of Autoencoder for 41 variables was confirmed in the proposed model and the comparison model. The restoration performance is different by variables, and the restoration is normally well operated because the loss value is small for Memory, Disk, and Network modals in all three Autoencoder models. The process modal did not show a significant difference in all three models, and the CPU modal showed excellent performance in CMAE. ROC curve was prepared for the evaluation of anomaly detection performance in the proposed model and the comparison model, and AUC, accuracy, precision, recall, and F1-score were compared. In all indicators, the performance was shown in the order of CMAE, MAE, and AE. Especially, the reproduction rate was 0.9828 for CMAE, which can be confirmed to detect almost most of the abnormalities. The accuracy of the model was also improved and 87.12%, and the F1-score was 0.8883, which is considered to be suitable for anomaly detection. In practical aspect, the proposed model has an additional advantage in addition to performance improvement. The use of techniques such as time series decomposition and sliding windows has the disadvantage of managing unnecessary procedures; and their dimensional increase can cause a decrease in the computational speed in inference.The proposed model has characteristics that are easy to apply to practical tasks such as inference speed and model management.