• Title/Summary/Keyword: 실버나노섬유

Search Result 3, Processing Time 0.017 seconds

Characteristics of Electrospun Ag Nanofibers for Transparent Electrodes (전기방사법으로 제조된 Ag 나노섬유의 투명전극 특성)

  • Hyeon, Jae-Young;Choi, Jung-Mi;Park, Youn-Sun;Kang, Jiehun;Sok, Junghyun
    • Journal of the Korean Vacuum Society
    • /
    • v.22 no.3
    • /
    • pp.156-161
    • /
    • 2013
  • We fabricated transparent conductive electrodes with silver (Ag) nanofibers by electrospinning process. Ag nanofibers have high aspect ratio and fused junctions which result in low sheet resistance. Electrospinning is a fast and efficient process to fabricate continuous one-dimensional (1D) nanofibers. Ag/polymer ink were prepared in polymer matrix solution by a sol-gel method. Then, Ag/polymer nanofibers precursors are heated at $200{\sim}500^{\circ}C$ in air for 2 h to eliminate partially the polymers. The topographical features of the Ag nanofibers were characterized by FE-SEM, and the electrical property was analyzed through I-V measurement system. Finally, optical property was measured using UV/VIS spectroscopy. The transparent conductive electrodes with Ag nanofibers exhibited a sheet resistance (Rs) of $250{\Omega}/sq$ at a transparency (T) of 83%. Transparent conductive films, contain the Ag nanofibers as conductive materials, have good electrical, optical, and mechanical properties. Therefore, it is expected to be useful for the application of flexible display in the future.

Natural Dyeing Absorption Properties of Chitosan and Nano Silver Composite Non-Woven Fabrics -Focus on Chrysanthemum Indicum Linn- (키토산/나노실버 복합섬유 혼방 부직포의 천연염색 염착특성 -감국을 중심으로-)

  • Hong, Byung-Suk;Chu, Young-Ju;Lee, Eun-Jin
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.34 no.5
    • /
    • pp.775-783
    • /
    • 2010
  • This study examines the dyeability, light fastness, washing fastness, and the antibacterial activity of chitosan and nano silver composite non-woven fabrics dyed with an extracted solution from Chrysanthemum Indicum Linn. The results show that an increase in the chitosan and nano silver percentage resulted in an increase in the $a^*$ values and $b^*$ values; however, the $L^*$ values decreased in the undyed condition. ${\Delta}E$ values of chitosan and nano silver composite non-woven fabrics were higher than cotton 100% non-woven fabrics in the dyed condition with an extracted solution from Chrysanthemum Indicum Linn, and mordant treatments influenced the chrominance change. In the dyed condition with an extracted solution from Chrysanthemum Indicum Linn, an increase in the percentage of chitosan and nano silver resulted in an increase of the K/S values. The dyeability of chitosan and nano silver composite non-woven fabrics increased by mordant treatments. The light fastness and washing fastness of the mordanted non-woven fabrics were better than the non-mordanted. For the antibacterial activity, the bacterial reduction rate of chitosan and nano silver composite non-woven fabrics was 99.9% to Staphylococcus aureus and Klebsiella pneumoniae.

An Experimental study on the human's physiological in Smart Textile Materials by Using Medical Infrared Thermo graphic Imaging (적외선 체열 영상 진단법을 이용한 스마트 섬유소재와 휴대폰 통화량에 따른 인체 생리반응 연구)

  • Lee Tae-il;Lee Su-jeong;Lee Kyung-mi
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.29 no.7 s.144
    • /
    • pp.918-925
    • /
    • 2005
  • The following are the results from the infrared body temperature image test to verify the changes in facial temperature according to call duration with a cellular phone. As for the body temperatures, it appears to be the mean value at the upper central point of phone's battery among 7 different points that are measured, and to be the highest at srernocleido-mastoid and scapular trapezius muscle triangle zone$(34.25^{\circ}C\; and\;34.05^{\circ}C\;each)$. The changes of body temperature according to the time duration shows that the body temperature rises according to the length of phone use because of the heat emitted from the battery. As for the temperature changes according to blocking materials, the one without processing appears to be higher in the mean temperature compared to the others that are processed, NSS(Nano Silver Silk) and NSG(Nano Silver Silk Gold) appear to be the lowest in the temperature to show the best blocking property. As for the temperature changes according to measuring points, it appears to be the highest at P4, P5 with all materials, and one with NSG to be the lowest at Pl, P2, P3, and one with NSS to be the lowest at P3, P4, P5, P6, which is due to the thermal conduction of Au and Ag. And the mean temperature at each point appears to be different according to the materials. Therefore, the study conducted with human participants requires a proper particle size of it which would not penetrate cellular tissues and a proper binder and binding treatment for it, to prevent the physical fatigues and the potential diseases. However, it is highly required for back-up researches to verify various aspects in applying nano silver to textile products.