• Title/Summary/Keyword: 실릴화반응

Search Result 5, Processing Time 0.018 seconds

Repair of Plasma Damaged Low-k Film in Supercritical Carbon Dioxide (초임계이산화탄소를 이용한 플라즈마 손상된 다공성 저유전 막질의 복원)

  • Jung, Jae-Mok;Lim, Kwon-Taek
    • Clean Technology
    • /
    • v.16 no.3
    • /
    • pp.191-197
    • /
    • 2010
  • Repair reaction of plasma damaged porous methyl doped SiOCH films was carried out with silylation agents dissolved in supercritical carbon dioxide ($scCO_2$) at various reaction time, pressure, and temperature. While a decrease in the characteristic bands at $3150{\sim}3560cm^{-1}$ was detectable, the difference of methyl peaks was not identified apparently in the FT-IR spectra. The surface hydrophobicity was rapidly recovered by the silylation. In order to induce effective repair in bulk phase, the wafer was heat treated before reaction under vacuum or ambient condition. The contact angle was slightly increased after the treatment and completely recovered after the subsequent silylation. Methyl groups were decreased after the plasma damage, but their recovery was not identified apparently from the FT-IR, spectroscopic ellipsometry, and secondary ion mass spectroscopy analyses. Furthermore, Ti evaporator was performed in a vacuum chamber to evaluate the pore sealing effect. The GDS analysis revealed that the open pores in the plasma damaged films were efficiently sealed with the silylation in $scCO_2$.

Platinum/Nickel Catalyzed Selective Hydrosilylation of Alkynes and Alkenes with 1,1'-Bis(dimethylhydrosilyl) Ferrocene (백금/니켈 촉매를 이용한 1,1'-Bis(dimethylhydrosilyl)ferrocene과 Alkynes, Alkenes의 선택적 Hydrosilyation 반응)

  • Kim, Jin-Sik;Kong, Young-Kun
    • Journal of the Korean Chemical Society
    • /
    • v.54 no.1
    • /
    • pp.27-37
    • /
    • 2010
  • The reaction of 1,1'-bis(dimethylhydrosilyl)ferrocene with alkynes in the presence of a catalytic amount of ($C_2H_4$)Pt$(PPh_3)_2$ leads to the acyclic mixture of monohydrosilylated and/or dihydrosilylated compounds. But the analogous reactions in the presence of Ni$(PEt_3)_4$ catalyst yield monohydrosilylated compounds or dihydrosilylated products. The monohydrosilylated products were generated from the reactions of alkenes with the silylated ferrocene using nickel catalyst.

Nickel Catalyzed Silylation Reaction of Carbonyl Compounds with 1,1'-Bis(dimethylsilyl)ferrocene (니켈 촉매를 이용한 1,1'-Bis(dimethylsilyl)ferrocene과 Carbonyl 화합물의 Silylation 반응)

  • Gong, Yeong-Geon;Lee, Jeong-Hyeon
    • Journal of the Korean Chemical Society
    • /
    • v.46 no.2
    • /
    • pp.139-144
    • /
    • 2002
  • The nickel-catalyzed reation of 1,1'-bis(dimethysilyl)ferrocene[1] with carbonyls such as benzaldehyde, 4-cyaonbezaldehyde, trimethylacetaldehyde, acethon, and benzophenone afforded 3-oxa-2,5-disilacyclo-1,1'-ferrocene. In contrast, the reation of [1] with isobutyraldehyde under the same reation condition yielded the diinsertion products formed via the insertion of two aldehyde ligands into the Si-H bond of 1,1'-bis(dimethy)ferrocene.

Selective Silylation Reaction of Aldehydes with 1,1'-Bis(dimethylsilyl)ferrocene in the Presence of Ni/Pt Catalyst (니켈/백금 촉매에 의한 1,1'-Bis(dimethylsilyl)ferrocene과 Aldehydes의 선택적 Silylation 반응)

  • Kim, Jin-Sik;Choi, Sung-Keun;Lee, Jung-Hyun;Kong, Young-Kun
    • Journal of the Korean Chemical Society
    • /
    • v.51 no.3
    • /
    • pp.232-239
    • /
    • 2007
  • The reaction of 1,1'-bis(dimethylsilyl)ferrocene with various aldehydes in the presence of a catalytic amount of Ni(PEt3)4 lead to the acyclic products by monohydrosilylation. The same reaction in the presence of a catalytic amount of (C2H4)Pt(PPh3)2 leads to the different cyclic six membered ring compound by double silylation. Platinum catalyzed double silylation of 4-cyanobenzaldehyde was generated 5,6-ferrocenylene-1,1,4,4,-tetramethyl-2-oxa-2- cyanophenyl-1,4-disylacyclehexane which was crystallized to have crystal structure.

Study on the hydrophobic modification of zirconia surface for organic-inorganic hybrid coatings (유-무기 하이브리드 코팅액 제조를 위한 지르코니아 표면의 소수화 개질 연구)

  • Lee, Soo;Moon, Sung Jin;Park, Jung Ju
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.2
    • /
    • pp.260-270
    • /
    • 2017
  • Zirconia has white color and physical, chemical stability, also using in high temperature materials and various industrial structural ceramics such as heat insulating materials and refractories due to their low thermal conductivity, excellent strength, toughness, and corrosion resistance. If hydrophobically modified zirconia is introduced into a hydrophobic acrylate coating solution, the hardness, chemical, electrical, and optical properties will be improved due to the better dispersibility of inorganic particle in organic coating media. Thus, we introduced $-CH_3$ group through silylation reaction using either trimethylchlorosilane(TMCS) or hexamethyldisilazane(HMDZ) on zirconia surface. The $Si-CH_3$ peaks derived from TMCS and HMDZ on hydrophobically modified zirconia surface was confirmed by FT-IR ATR spectroscopy, and introduction of silicon was confirmed by FE-SEM/EDS and ICP-AES. In addition, the sedimentation rate result in acrylate monomer of the modified zirconia showed the improved dispersibility. Comparison of the sizes of a pristine and the modified zirconia particles, which were clearly measured not by the normal microscope but by particle size analysis, provided a pulverizing was occurred by physical force during the silylation process. From the BET analysis data, the specific surface area of zirconia was approximately $18m^2/g$ and did not significantly change during modification process.