• Title/Summary/Keyword: 실린더 헤드포트

Search Result 6, Processing Time 0.021 seconds

An Experimental Study of the Flow Characteristics of Cylinder Head Port for Medium-Speed Diesel Engines (중속 디젤엔진의 실린더 헤드포트 유동 특성 실험 연구)

  • Kim, Jin-Won;Ghal, Sang-Hak
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.790-795
    • /
    • 2001
  • Since the characteristics of combustion and pollutant in Diesel engines were mainly affected by the characteristics of in-cylinder gas flow and fuel spray, an understanding of those was essential to the design of the D.I. Diesel engines. The improvement of volumetric efficiency of air charging into combustion chamber is a primary requirement to obtain better mean effective pressure of an engine. Since the air resistances in intake and exhaust flow passages, valve lift and valve shape influence greatly to the volumetric efficiency, it is very important to investigate the flow characteristics of intake and exhaust port which develops air motion in the combustion chamber. This paper presents the results of an experimental investigation of steady flow through the various kinds of commercial cylinder head ports, and the development procedures of HHI's H21/32 prototype cylinder head ports.

  • PDF

A Study on the Optimization of Cylinder Head Port Flow for Hyundai H21/32 Medium-Speed Diesel Engines (현대 H21/32 중속 디젤엔진 실린더 헤드포트 최적화 연구)

  • Kim, Byung-Yoon;Kim, Jin-Won;Ghal, Sang-Hak
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.806-811
    • /
    • 2001
  • Since the characteristics of combustion and pollutant in Diesel engines were mainly effected by the characteristics of in-cylinder gas flow and fuel spray, an understanding of those was essential to the design of the D.I. Diesel engines. The improvement of volumetric efficiency of air charging into combustion chamber is a primary requirement to obtain better mean effective pressure of an engine. Since parameters such as the air resistances in intake and exhaust flow passages, valve lift and valve shape influence greatly to the volumetric efficiency, it is very important to investigate the flow characteristics of intake and exhaust port which develops air motion in the combustion chamber. In this study, two approach methods were used for design intake and exhaust port; experiment and computation which were made by using steady flow test rig and commercial CFD code. This paper presents the results of an experimental and analytical investigation of steady flow through the prototype cylinder head ports and valves of the HHI's H21/32 HIMSEN Engine.

  • PDF

Diesel Engine Intake-Port Analysis Using Reverse-Engineering Technique (리버스 엔지니어링을 통한 디젤엔진 흡기포트의 분석)

  • Park, Sung-Young;Kim, Yong-Tae
    • Proceedings of the KAIS Fall Conference
    • /
    • 2012.05b
    • /
    • pp.674-676
    • /
    • 2012
  • 본 논문에서는 3차원 설계데이터가 부재한 디젤엔진 실린더 헤드의 흡기포트 데이터를 확보하기 위하여 리버스 엔지니어링 기법을 적용하였다. 획득된 해석 모델을 이용하여 디젤엔진 흡기포트에 대한 유동해석을 수행하였으며, 텀블 유동과 스월유동의 존재를 해석 결과로서 확인할 수 있었다. 이러한 기법의 적용은 향후 3차원 설계데이터가 부재한 엔진이나 경쟁엔진의 분석에 유용하게 적용될 수 있을 것으로 판단된다.

  • PDF

Computational Approach to Improve Coolant Flow Characteristics for the SI Engine (수치해석적 접근을 통한 불꽃점화 엔진의 냉각수 유동특성 개선)

  • Lee, Sang-In;Park, Sung-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.12
    • /
    • pp.3553-3558
    • /
    • 2009
  • This study has been conducted to improve coolant flow pattern in the gasoline engine. Flow field has been calculated for the coolant passage mainly around the exhaust ports and valves. For the original model, a flow stagnant region has existed between exhaust valves of the second cylinder. To improve coolant flow characteristics, coolant passage area has been re-modeled and optimized. Furthermore, for the improved coolant core model, coolant passage under the exhaust manifold has been added to reduce exhaust-gas temperature. It was found that the flow through a gasket plays a critical role for the flow in the cylinder head and around exhaust valves. Finally, coolant flow around exhaust valves and in the cylinder head has been improved in terms of flow rate distribution.

Study for Failure Examples Involved to Spark Plug Assembling Part Damage, Timing Maladjustment and Alien Substance Insertion in Intake Valve Part on LPG Vehicle Engine (자동차용 LPG 엔진의 점화플러그 장착 부 손상, 점화시기 조정불량, 흡입밸브 부 이물질유입 고장사례 연구)

  • Lee, IL Kwon;Kook, Chang Ho;Ham, Sung Hoon;Kim, Sung Mo;Hwang, Han Sub;Jung, Dong Hwa;Moon, Hak Hoon;Lee, Jeong Ho
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.2
    • /
    • pp.22-27
    • /
    • 2021
  • This paper is a purpose to study the failure examples for LPG vehicle. The first example, the researcher certified the incongruity phenomenon decreased engine power by ignition fire leakage because of spark plug threaded part damage assembling in cylinder head. The second example, the timing mark that accurately adjusting the camshaft and crankshaft position were twisted about 0.5 block each other. Finally, the researcher seeked the disharmony phenomenon as it couldn't set ignition timing. The third example, the researcher knew the failure phenomenon by interrupted the closing period for intake valve moving with air flow in the number 3 port of cylinder head as the foreign substance in cylinder head didn't remove. Therefore, the manager of a car has to thorough going inspect and the manufacture of a car must remove the cause of failure with quality assurance.

A Study on the Automatic Measurement of Swirl Generated fi:om Intake Port of Engine Cylinder Head Using an I-IEEE-1394 Camera and Step Motors (IEEE-1394카메라와 스텝모터를 이용한 엔진 실린더헤드의 흡기포트 스월 측정 자동화에 관한 연구)

  • Lee Choong-Hoon
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.6
    • /
    • pp.88-94
    • /
    • 2005
  • A swirl ratio of a charge in the cylinder could be calculated by measuring both the rotary speed of paddle and the intake air flow rate in the swirl measurement apparatus fur several positions of valve lift. The automation of the swirl ratio measurement for a cylinder head is achieved by controlling both the valve lift of cylinder head and a suction pressure of the surge tank, instead of controlling them manually. PID control of the surge tank pressure and positioning a valve lift of the cylinder head are also achieved by using two step motors, respectively. Rotating speed of a paddle are measured using an optical sensor and a counter. Flow rate are measured from ISA 1932 flow nozzle by reading a differential pressure gauge position using IEEE-1394 camera. Time to measure the swirl ratio for a port in the cylinder head is drastically reduced from an hour to 3 minutes by automation control of the apparatus.