• Title/Summary/Keyword: 실리카 나노 와이어

Search Result 46, Processing Time 0.026 seconds

The Photoluminescence Properties of Er doped Alumina Sol-Gel Films Coated on Si Substrates (Er이 도핑된 알루미나 졸-겔 코팅막의 광발광 특성)

  • 권정오;황영영;김재홍;석상일
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.223-223
    • /
    • 2003
  • 광통신에는 광신호의 전송과 광신호 처리에 처리 과정에서 광 손실을 수반하므로 각 요소별로 광신호 증폭이 반드시 필요하다. 또한 광통신망의 완전 광화를 위해서는 제조 공정이 간단하여 가격이 저렴하고, 높은 신뢰성과 높은 증폭 효율을 가지면서 다른 부품과의 집적화가 가능한 광도파로형 광증폭기가 요구되고 있다 그러나 실리카는 광통신 파장대인 1.55$\mu\textrm{m}$대역의 증폭이 가능한 Er 이온에 대한 용해도가 50ppm 이하로 낮아 lmol% 이상 고농도로 Er 이온을 첨가하여 높은 증폭 효율을 얻는데 한계를 가지고 있다. 따라서 본 연구에서는 Er 이온에 대하여 높은 용해 특성을 가지고 있어 고농도 Er 이온 도핑이 가능한 알루미나에 Er을 1-2 mol% 첨가하여 광발광 특성을 조사하였다. Er이 첨가된 알루미나 나노 졸은 Al(NO$_3$)$_3$ㆍ9$H_2O$와 Er(NO$_3$)$_3$.5$H_2O$가 일정 양 용해된 수용액에 NH$_4$OH를 가하여 침전물을 얻고 여과 및 수세하여 졸 입자의 함량이 약 5wt%가 되게 이온교환수와 해교제인 초산을 소량 가하여 10$0^{\circ}C$에서 약 50시간 열처리하는 방법으로 제조하였다. Er이 첨가된 알루미나 코팅막은 Er 이 첨가된 알루미나 나노 졸에 GPS(3-glycidoxypropyltriethoxysilane)를 Al에 대하여 7 mol% 가하여 스핀 코팅법으로 제조하였다. Si 기판에 코팅하고, 상온에서 90$0^{\circ}C$까지 각 1시간 열처리한 코팅막의 광 발광 특성은 Er 이온의 첨가량과 열처리로 변화된 알루미나 코팅막의 결정상과 연계하여 논의 될 것이다. X-선 회절법으로 분석한 알루미나 코팅막의 온도에 따른 결정상은 boehmite 상에서 약 50$0^{\circ}C$이후에 ${\gamma}$-Al$_2$O$_3$로 전이하고 있다.

  • PDF

Charge-Discharge Characteristics of Lithium Metal Polymer Battery Adopting PVdF-HFP/(SiO2, TiO2) Polymer Electrolytes Prepared by Phase Inversion Technique (상반전 기법으로 제조한 PVdF-HFP/(SiO2, TiO2) 고분자 전해질을 채용한 리튬금속 고분자 2차전지의 충방전 특성)

  • Kim, Jin-Chul;Kim, Kwang-Man
    • Korean Chemical Engineering Research
    • /
    • v.46 no.1
    • /
    • pp.131-136
    • /
    • 2008
  • Silica- or titania-filled poly (vinylidene fluoride-co-hexafluoropropylene)-based polymer electrolytes were prepared by phase inversion technique using N-methyl-2-pyrrolidone and dimethyl acetamide as solvent and water as non-solvent. The polymer electrolytes were adopted to the lithium metal polymer battery using high-capacity cathode $Li[Ni_{0.15}Co_{0.10}Li_{0.20}Mn_{0.55}]O_2$ and lithium metal anode. After the repeated charge-discharge test for the cell, it was proved that the cell adopting the polymer electrolyte based on the phase-inversion membrane containing 40~50 wt% silica showed the highest discharge capacity (180 mAh/g) until 80th cycle and then abrupt capacity fade was just followed. The capacity fade might be due to the deposition of lithium dendrite on the polymer electrolyte, in which the capacity retention was no longer sustainable.

Effects of the Rheological Properties of UV Cured Acrylic Pressure Sensitive Adhesive with Nano-particles on the Silk Screen Printing and Adhesion (실크 스크린 인쇄 및 점착력에 나노 입자가 포함된 UV 경화형 아크릴계 감압 점착제의 유변학적 특성)

  • Cho, Min-Jeong;Kang, Ho-Jong;Kim, Dong-Bok
    • Journal of Adhesion and Interface
    • /
    • v.18 no.1
    • /
    • pp.25-32
    • /
    • 2017
  • For application to display module junction process, the silk screen printing based on UV curable acrylic pressure sensitive adhesive(PSA) with silica nano-particles and the rheological properties were studied to investigate the effect on printability and adhesion. The monomers for PSA were based on 2-ethylhexyl acrylate(2-EHA) and acrylic acid(AA) 93:7, butyl acylate(BA), 2-hydroxyethyl acrylate(2-HEA) and tetrahydrofurfuryl acrylate(THFA) were added. Additionally, hydrophobic and hydrophilic nano-particles AEROSIL R974 and AEROSIL 200 were added, respectively. When the ratio of nano-particle was used above 4 or 7 phr, G' and ${\eta}^*$ were increased significantly. When the ratio of AEROSIL 200 was used above 7 phr, the penetration property was decreased during the silk screen printing. We found that the adhesion was decreased with increasing the nano-particle content, and it was decreased in the case of the hydrophilic nano-particle AEROSIL 200.

Transports of Ferrihydrite Colloids in Packed Quartz Sand Media (석영모래 속에서의 Ferrihydrite 콜로이드 이동)

  • Kim, Seok-Hwi;Gu, Baohua;Lee, Jae-Hoon;Wang, Wei;Park, Ki-Hoon;Kim, Kang-Joo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.19 no.4 s.50
    • /
    • pp.231-238
    • /
    • 2006
  • Transports of heterogeneously charged particles were investigated based on column experiments. Synthesized mono-dispersed ferrihydrite (${\sim}100nm$) and amorphous $SiO_2\;({\sim}40nm\;and\;{\sim}80nm)$ particles, of which surfaces are oppositely charged under pH < 9.0 (ferrihydrite, positive; amorphous silica, negative), were used. $177{\sim}250{\mu}m$ quartz sand was used as a stationary matrix. The results show that even favorable particles (i.e., ferrihydrite) can show a conservative transport through the oppositely charged media (i.e., quartz) when they coexist with humic acid or with much greater number of oppositely charged particles. These results imply that transports of both negatively and positively charged contaminants may be possible at the same time under a condition of heterogeneous colloidal system.

Hydrogen Storage Using Pd Doped Mesoporous Carbon Materials (팔라듐이 담지된 중형 기공성 탄소 재료를 이용한 수소 저장)

  • Kim, Wooyoung;Kim, Dongmin;Hong, Youngteak;Kang, Taegyun;Yi, Jongheop
    • Clean Technology
    • /
    • v.12 no.2
    • /
    • pp.107-111
    • /
    • 2006
  • Two types of mesoporous carbons, CMK-3 and CMK-5, were prepared using mesoporous silica as a removable template, and their hydrogen storage capacities were evaluated. For the purpose of comparison, MWCNT (multi-walled carbon nanotubes) was selected and the adsorption of hydrogen was measured. The amount of hydrogen adsorbed on carbon materials was found to be closely related to the surface areas of carbon samples: The higher the surface area of the carbon material, the larger amount of hydrogen was adsorbed. The hydrogen storage capacity increased in the order of CMK-5 > CMK-3 > MWCNT. In addition, hydrogen storage capacity was greatly enhanced by the Pd-doping onto CMK-5. When the metallic Pd was doped on the carbon material, the adsorption amount of hydrogen via a hydrogen spill-over mechanism was crucial to the hydrogen storage capacity of Pd-doped CMK-5.

  • PDF

Silica and Iron Oxide Recovery and Mineral Carbonation from Serpentine Minerals Using Acid Dissolution and pH Swing Processes (산 처리와 pH 조절을 이용한 사문석군 광물로부터 규소와 철산화물 회수 및 광물 탄산화 연구)

  • Baek, Jiyeon;Jo, Yeonu;Lee, Jeongheon;Kwon, Nayoon;Kim, Yeram;Choi, Suk;Kim, Sunghee;Roh, Yul
    • Economic and Environmental Geology
    • /
    • v.49 no.1
    • /
    • pp.13-22
    • /
    • 2016
  • The objectives of this study were to recover silica and iron oxides and $CO_2$ sequestration using serpentine via various acid dissolution and pH swing processes. Serpentine collected from Guhang-myeon in S. Korea were mainly composed of antigorite and magnetite consisting of $SiO_2$ (45.3 wt.%), MgO (41.3 wt.%), $Fe_2O_3$ (12.2 wt.%). Serpentine pulverized ($${\leq_-}75{\mu}m$$) and then dissolved in 3 different acids, HCl, $H_2SO_4$, $HNO_3$. Residues treated with acidic solution were recovered from the solution (step 1). And then the residual solution containing dissolved serpentine was titrated using $NH_4OH$. And pH of the solution increased up to pH=8.6 to obtain reddish precipitates (step 2). After recovery of the precipitates, the residual solution reacted with $CO_2$ and then pH increased up to pH=9.5 to precipitate white materials (step 3). The mineralogical characteristics of the original sample and harvested precipitates were examined by XRD, and TEM-EDS analyses. ICP-AES analysis was also used to investigate solution chemistry. The dissolved ions were Mg, Si, and Fe. The antigorite became noncrystralline silica after acid treatment (step 1). The precipitate at pH=8.6 was mainly amorphous iron oxide, of which size ranged from 2 to 10 nm and mainly consisting of Fe, O, and Si (step 2). At pH=9.5, nesquehonite [$Mg(HCO_3)(OH){\cdot}2(H_2O)$] and lasfordite [$MgCO_3{\cdot}H_2O$] were formed after reaction with $CO_2$ (step 3). The size of carbonated minerals was ranged from 1 to $6{\mu}m$. These results indicated that the acid treatment of serpentine and pH swing processes for the serpentine can be used for synthesis of other materials such as silica, iron oxides and magnesium carbonate. Also, This process may be useful for the precursor synthesis and $CO_2$ sequestration via mineral carbonation.