• Title/Summary/Keyword: 실란커플링제

Search Result 102, Processing Time 0.025 seconds

Modification of glass fiber bundle with functionalized coupling agents and phenolic resin (기능성 커플링제와 페놀수지에 의한 유리섬유 다발의 표면개질 연구)

  • Lee, Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.1
    • /
    • pp.168-175
    • /
    • 2016
  • The surface of glass fiber bundle was modified with functionalized silanes and phenolic resin to improve the tensile strength as well as the adhesion of glass fiber to matrix phenolic resin. The surface modification of reinforcing glass fiber can play a significant role in controlling whole composite characteristics. We applied surface modification of glass fiber with two different functionalized silanes, such as glycidyltrimethoxysilane(G-silane) and aminopropyltriethoxysilane (A-silane), and phenol formaldehyde(PF) resin in one pot or separated process under different coating compositions and temperatures. Thermal treatment temperature is very important factor to improve the mechanical properties of modified glass fiber. Modified glass fiber bundle treated at $170^{\circ}C$ showed the highest tensile strength of $10.05g_f/D$. Surface analyses by scanning electron microscope(SEM) and FT-IR spectroscopy were used to characterize the surface coatings on glass fiber bundles. Mechanical property changes as functions of treatment conditions and coupling agent types were also explained.

Effect of Acrylonitrile-Butadiene Rubber on the Properties of Silica-Filled Styrene-Butadiene Rubber Compounds: Reduction of Silane Coupling Agent and Diphenylguanidine (실리카로 보강된 SBR 배합물의 특성에 미치는 NBR 효과: 실란커플링제와 DPG의 사용량 감소)

  • Choi, Sung-Seen;Chang, Dong-Ho;Kim, Ik-Sik
    • Elastomers and Composites
    • /
    • v.37 no.4
    • /
    • pp.217-223
    • /
    • 2002
  • Silica-filled rubber compounds show poor filler dispersion and slow cure characteristics compared to carbon black-filled ones. In general, a silica-filled rubber compound contains silane coupling agent (bis-(3-(triethoxysilyl)-propyl)-tetrasulfide, TESPT) and diphenylguanidine (DPG) to improve the filler dispersion and to make fast cure characteristics. Acrylonitrile-butadiene rubber (NBR) improves the filler dispersion in silica-filled styrene-butadiene rubber (SBR) compounds. In this study, effect of NBR on the properties of silica-filled SBR compounds was investigated. Properties of the compounds which contain NBR without DPG or with small amount of TESPT (Compound A) were compared with those of the compounds which contain TESPT and DPG without NBR (Compound B). Scorch time of Compound A is faster than those of Compound B. Modulus and tensile strength of Comound A are slightly lower than those of Compound B. Traction property of the Comound A is better than that of the Compound B. Addition of NBR leads to reduction of the used amount of TESPT and DPG.

Effect of Functionalized Binary Silane Coupling Agents by Hydrolysis Reaction Rate on the Adhesion Properties of 2-Layer Flexible Copper Clad Laminate (이성분계 실란 커플링제의 가수분해속도 조절에 의한 2-FCCL의 접착특성 변화 연구)

  • Park, U-Joo;Park, Jin-Young;Kim, Jin-Young;Kim, Yong-Seok;Ryu, Jong-Ho;Won, Jong-Chan
    • Polymer(Korea)
    • /
    • v.35 no.4
    • /
    • pp.302-307
    • /
    • 2011
  • The parameters of silanol formation reaction of organosilane including solvent type, solution concentration, pH and hydrolysis time influence the adhesion property of 2 layer flexible copper clad laminate (FCCL). Especially, the hydrolysis reaction time of silane coupling agent affects the formation of the silanol groups and their self-condensation to generate oilgomeric structure to enhance the surface treatment as an adhesive promoter. In our study, we prepared the binary silane coupling agents to control hydrolysis reaction rate and surface energy after treatment of silane coupling agents for increasing the adhesive property between a copper layer and a polyimide layer. The surface morphology of rolled copper foil, as a function of the contents of the coated binary silane coupling agent, was fully characterized. As fabricated 2-layer FCCL, we observed that adhesive properties were changed by hydrolysis rate and surface energy.

Quantitative Analysis of Silanization Degree of Silica Nanoparticles Modified with Bis[3-(trimethoxysilyl)propyl]amine Coupling Agent (Bis[3-(trimethoxysilyl)propyl]amine 커플링제로 개질된 실리카 나노입자의 실란화도 정량 분석)

  • Jeon, Ha-Na;Kim, Jung-Hye;Ha, Ki-Ryong
    • Polymer(Korea)
    • /
    • v.36 no.3
    • /
    • pp.372-379
    • /
    • 2012
  • In this study, we treated silica nanoparticles with bis[3-(trimethoxysilyl)propyl]amine (BTMA) silane coupling agent to modify their surfaces. We investigated the effects of BTMA hydrolysis time, BTMA concentration and BTMA treatment time on the degree of silanization reaction of silica nanoparticles. We used Fourier transform infrared spectroscopy (FTIR), elemental analysis (EA) and solid state cross-polarization magic angle spinning (CP/MAS) nuclear magnetic resonance spectroscopy (NMR) to obtain quantitative data. We found the decrease of isolated Si-OH peak intensity at 3747 $cm^{-1}$ and the increase of $-CH_2 $stretching and bending peaks with increasing hydrolysis time, concentration and treatment time of BTMA. EA analysis results also supported this trend. We found a strong effect of BTMA concentration on the degree of silanization of the silica particles, but weak effects of the hydrolysis time and the treatment time.

Bonding Properties of PMMA Mortars Using EPS with Silane Coupling Agent (실란 커플링제를 첨가한 발포폴리스티렌 혼입 폴리메타크릴산 메틸 모르타르의 부착특성)

  • Lee, Chol-Woong;Mun, Kyoung-Ju;Choi, Nak-Woon;Jeon, Seong-Hwan;Soh, Yang-Seob
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.301-304
    • /
    • 2006
  • The purpose of this study is to evaluate bonding properties of PMMA mortars using EPS with silane coupling agent. PMMA mortars are prepared with various silane coupling agent, and tested for flexural strength test, adhesion test in flexure and tensile strength in underwater and air. It is estimated that the application of silane coupling agent to PMMA mortar is more effective in underwater than air.

  • PDF

Removal of Anionic Dyes and Heavy Metal Ions Using Silica Nanospheres or Porous Silica Micro-particles Modified with Various Coupling Agents (다양한 커플링제로 표면 개질된 실리카들을 활용한 음이온성 염료 및 중금속의 제거)

  • Sung, Sohyeon;Lee, Minjun;Cho, Young-Sang
    • Korean Chemical Engineering Research
    • /
    • v.59 no.4
    • /
    • pp.596-610
    • /
    • 2021
  • For application in adsorption process, we synthesized silica nanospheres by Stober method, and silica particles with wrinkled surface as well as macroporous silica particles were also fabricated by utilizing emulsion droplet as micro-reactors, followed by modification of the particle surface using suitable coupling agents containing amine groups. These particles exhibited improved adsorption capacity for heavy metal ions and anionic dyes, which were difficult to be removed by conventional silica particles without surface modification. Anionic dye, methyl orange could be removed almost completely by adsorption using porous silica particles modified using APTES. The adsorption efficiency of heavy metal like copper ions was close to 100%, when porous silica was used as adsorbent particles modified with AAPTS.

Effect of 3-Isocaynatopropyl Triethoxy Silane on PU Adhesive (3-Isocaynatopropyl Triethoxy Silane이 PU 접착제에 미치는 영향)

  • Ju, Honghee;Jang, Euisub;Park, Chan Young;Lee, Won-Ki;Kim, Taekyun;Chun, Jae-Hwan
    • Journal of Adhesion and Interface
    • /
    • v.14 no.1
    • /
    • pp.36-42
    • /
    • 2013
  • To improve hydrolytic stability of polyurethane (PU) adhesives, a silane coupling agent (SCA) was added. 3-Isocyanatopropyl triethoxy silane (ITS) as a SCA has two functional groups in the main chain and it is used to improve an interfacial interaction between polymer and inorganic material or metal. In this study, PU adhesives with different amounts of ITS from 0 to 1 wt% were synthesized. Pot time, modulus, thermal stablilty, and adhesive force of the obtained samples were measured. The results showed that the adhesives with ITS showed better properties than that of pure one.

Interfacial Morphology of Glass Fiber/Polypropylene Composite (유리 섬유/폴리프로필렌 복합재료의 계면 형태구조)

  • 남주영;박수현;이광희;김준경
    • Polymer(Korea)
    • /
    • v.27 no.4
    • /
    • pp.299-306
    • /
    • 2003
  • It is well known that the interaction and adhesion between the glass fiber (GF) and polymer matrix has a significant effect in determining the properties of fiber-reinforced materials. Therefore, it is one of important considerations to modify the surface of glass fiber with an appropriate sizing. We investigated the treatment method of glass fiber with coupling agent to improve the interaction of the interfacial region. The correlation between interfacial property and interphase microstructure was also examined in an attempt to realize a proper morphology at the glass fiber surfaces.

Preparation and Characteristics of Fouling Resistant Nanofiltration Membranes (내오염성 나노여과막의 제조 및 특성)

  • Kim, No-Won
    • Membrane Journal
    • /
    • v.17 no.1
    • /
    • pp.44-53
    • /
    • 2007
  • The primary objective of this study is to increase the extent of water flux and fouling resistance of nano-filtration or reverse osmosis membranes. This study was performed to investigate the effect of surface characteristics of silane coated membranes on modified fouling index. Commercial polyamide composite RO membrane (RE1812-LP) and NF membrane (ESNA4040-LF) were treated with silane coupling agents in ethanol at five different concentrations. The silane coupling reagent, aminopropylmethoxydiethoxysilane, contains one aminoalkyl and three alkoxy groups. The hydrophilic effect of aminoalkyl group of APMDES on the permeability and fouling resistance of the modified membrane was examined. The surfaces of the modified membranes were characterized by FE-SEM, contact angle analyzer, and zeta potentiometer in order to confirm successful sol-gel methods. The modified NF membranes showed significantly enhanced water flux and fouling resistance without a decrease in salt rejection in divalent ionic feed solution.

A Study on the Compatibility of Nanocellulose-LDPE Composite (나노셀룰로오스-LDPE 복합체의 제조에 있어서 상용성에 대한 연구)

  • Cho, Eun Hyeong;Kim, Young Ho
    • Clean Technology
    • /
    • v.27 no.2
    • /
    • pp.124-131
    • /
    • 2021
  • As declarations of carbon neutrality are spreading throughout the world, much research is being conducted on biodegradable polymers. In this study, nanocellulose, which comprises the largest amount of natural polymer currently available in the world, was proposed as a substitute for non-biodegradable polymers. We chose to modify the surface functional group of crystalline nanocellulose using glycidoxypropyl trimethoxysilane (GPTMS), which is a silane coupling agent, and the product was then used to form a film with low density polyethylene (LDPE). We then conducted measurements using a Fourier transform infrared spectrophotometer (FT-IR) in addition to measuring hydrophilic/lipophilicity of the surface functional group modification of crystalline nitrocellulose as well as that of a polymer composite using the hybrid nanocellulose (H-NC). For compatibility with petroleum-based polymers, the best tensile strength and transparency was found when the H-NC was reacted at pH 14 and 1 wt% compared with LDPE. From the test results, we found that it is possible to modify the surface functional groups of nanocellulose using a silane coupling agent. In addition, the high compatibility of nanocellulose with petroleum-based polymers is expected to help in reaching carbon neutrality by reducing the use of fossil fuels.