• Title/Summary/Keyword: 실내 측위 시스템

Search Result 194, Processing Time 0.026 seconds

IEEE 802.15.4a IR-UWB System Design for Indoor Ranging and Communications (실내 무선측위/통신을 위한 IEEE 802.15.4a IR-UWB 시스템 설계)

  • Oh, Mi-Kyung;Park, Joo-Ho;Oh, Jung-Yeol;Kil, Min-Su;Kim, Jae-Young
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.4 no.1
    • /
    • pp.16-22
    • /
    • 2009
  • This paper aims at designing an impulse-radio ultra-wideband (IR-UWB) transceiver, especially targeting the IEEE 802.15.4a indoor ranging and communication systems. We first investigate the IEEE 802.15.4a IR-UWB signals and suggest the full-digital transceiver architecture accordingly. Since the wireless systems equipped with the impulse signal have the property of low-duty cycle, i.e., discontinuity in time, while the conventional systems takes the continuous signals, it is required to reconfigure the system design, including link budget. Following brief introduction to our IEEE 802.15.4a IR-UWB system hardware, we finally examine the ranging performance in indoor environments to verify our system design.

  • PDF

Implementation of UWB Indoor Positioning and Real-time Remote Control System for Disaster Monitoring based on Digital Twin (재난 감시 디지털 트윈을 위한 UWB 실내 측위 및 실시간 원격제어 시스템 구현)

  • Yu, Da-Song;Kim, Won-Suk
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.12
    • /
    • pp.1682-1692
    • /
    • 2021
  • Digital Twin, one of the core technologies of the Fourth Industrial Revolution, is attracting attention as a very suitable technology for disaster monitoring such as fires and earthquakes. In this paper, we implement a system equipped with UWB RTLS(Ultra-Wideband Real Time Location System), real-time remote control, and video streaming, which are element technologies for disaster monitoring digital twin. Since the proposed system structure is based on a cloud server, the actual location of the UWB indoor positioning-based client is transmitted to the user device in real time and stored on the cloud server for statistical and data analysis. In addition, we demonstrate through experiments that outliers occurs when the value of RSSI(Received Signal Strength Indicator) decreases due to communication collisions between UWB Tags, and propose an RSSI outlier correction algorithm to solve this problem.

Constant Amplitude Multiple Access Channel Coding for Impulse Radio UWB Networks (임펄스 UWB 네트워크에서의 일정진폭 다중접속 채널코팅)

  • Kim, Tong-Sok;Kim, Yong-Cheol
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.45 no.6
    • /
    • pp.42-47
    • /
    • 2008
  • In this article a novel constant amplitude precoding for impulse UWB system is proposed. According to IEEE 802.15.4a, impulse UWB can be used in indoor localization and sensor data transmission. Most USN(ubiquitous sensor networks) needs multiple access. However impulse UWB system has a limited capability to detect superpositioned signal induced by multiple access. To overcome this problem we have adopted the concept of CAMC(Constant Amplitude Multi-Code) deviced by Wada and Kim. The proposed system consists of systematic constant amplitude precoding and LDPC decoding. And this system shows a good BER performance in computer simulation.

Development of a WPAN-based Self-positioning System for Indoor Flying Robots (실내 비행 로봇을 위한 WPAN 기반 자가 측위 시스템 개발)

  • Lim, Jeong-Min;Jeong, Won-Min;Sung, Tae-Kyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.5
    • /
    • pp.490-495
    • /
    • 2015
  • As flying robots are becoming popular, there are increased needs to use themforsuch purposes as parcel delivery, serving in restaurants, and stage performances. To control flying robots such as quad copters, localization is essential. In order to properly position flying robots, many techniques are in development, including IR (infra-red)-based systemswhich catch markers on a flying robot in order that it can position itself. However, this technique demonstrates only short coverage. Furthermore, localization from inertial sensors diverges as time passes. For this reason, this paper suggests a TWR (two-way ranging) based positioning technique. Despite the weaknesses in currently available TWR system, this paper suggests a self-positioning and outlier detection technique in order to provide reliable position information with a faster update rate. The self-positioning system sends a shorter message which reduces wireless traffic. By detecting and removing outlier measurements, a positioning result with better accuracy is acquired. Finally, this paper shows that the suggesting system detects outlierssequentially from less than half the number of anchors in localization system according to the degree of outlier in measurement and the noise level. By performing an outlier algorithm, better positioning accuracy is acquired as shown in the experimental result.

A Study on the Application of U-SAT System for the Indoor Positioning Technology of Ubiquitous Computing (유비쿼터스 컴퓨팅의 실내 측위 기술을 위한 U-SAT 시스템의 적용에 관한 연구)

  • Lee, Dong-Hwal;Park, Jong-Jin;Kim, Su-Yong;Mun, Young-Song;Lee, Man-Hyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.9
    • /
    • pp.876-882
    • /
    • 2006
  • This study presents an ultrasonic location awareness system for the ubiquitous computing with absolute position. The flight time of ultrasonic waves is determined by a period detecting technique which is able to extend the sensing range compared with traditional methods. For location awareness, ultrasonic waves are sent successively from each ultrasonic transmitter and synchronized by radio frequency (RF) signal, where the transmitting part is fixed and the receiving part is movable. To expand the recognizing range, cell matching technique and coded ultrasonic technique are introduced. The experimentation for various distances is accomplished to verify the used period detecting technique of U-SAT system. The positioning accuracy by using cell matching is also verified by finding the locations of settled points and the usability of coded ultrasonic technique is verified. As a result, the possibility of ultrasonic location awareness system for the ubiquitous computing can be discussed as a pseudo-satellite system with low cost, a high update rate, and relatively high precision, in the places where CPS is not available.

Distance Estimation Using Convolutional Neural Network in UWB Systems (UWB 시스템에서 합성곱 신경망을 이용한 거리 추정)

  • Nam, Gyeong-Mo;Jung, Tae-Yun;Jung, Sunghun;Jeong, Eui-Rim
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.10
    • /
    • pp.1290-1297
    • /
    • 2019
  • The paper proposes a distance estimation technique for ultra-wideband (UWB) systems using convolutional neural network (CNN). To estimate the distance from the transmitter and the receiver in the proposed method, 1 dimensional vector consisted of the magnitudes of the received samples is reshaped into a 2 dimensional matrix, and by using this matrix, the distance is estimated through the CNN regressor. The received signal for CNN training is generated by the UWB channel model in the IEEE 802.15.4a, and the CNN model is trained. Next, the received signal for CNN test is generated by filed experiments in indoor environments, and the distance estimation performance is verified. The proposed technique is also compared with the existing threshold based method. According to the results, the proposed CNN based technique is superior to the conventional method and specifically, the proposed method shows 0.6 m root mean square error (RMSE) at distance 10 m while the conventional technique shows much worse 1.6 m RMSE.

An Experimental Study on Compensation Algorithm for Localization using Modified Bilateration Technique and Pyroelectric Sensor in a Ship (변형 이변측위기법과 초전센서를 이용한 선내 위치인식 보정 알고리즘에 관한 실험적 연구)

  • Seong, Ju-Hyeon;Choi, Jae-Hyuk;Kim, Jong-Su;Seo, Dong-Hoan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.18 no.5
    • /
    • pp.488-495
    • /
    • 2012
  • The real-time indoor location technology using radio waves has been studied in a variety of environments. One of them, a ship which consists of steel structure has high reception rate but causes significant ranging error due to the reflection of radio waves. In order to reduce location measurement errors that occurs in such a environment, this paper, based on CSS of IEEE 802.15.4a, presents compensation algorithm for localization using modified bilateration and pyroelectric sensor in a ship. The proposed system reduces the number of fixed nodes by estimating the appropriate reception distance between mobile node and fixed node through the analysis of CSS characteristic in a narrow passage such as ship corridors. Also, in the corner section which the ranging errors are significantly fluctuated due to the reflection and diffraction of radio waves, we recognize the location by tracking the a moving section using modified bilateration technique and pyroelectric sensor. The experimental results show that the location accuracy and efficiency of the proposed algorithm are improved 86.2 % compared to general method.

Ultra-WideBand Channel Measurement with Compressive Sampling for Indoor Localization (실내 위치추정을 위한 Compressive Sampling적용 Ultra-WideBand 채널 측정기법)

  • Kim, Sujin;Myung, Jungho;Kang, Joonhyuk;Sung, Tae-Kyung;Lee, Kwang-Eog
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.2
    • /
    • pp.285-297
    • /
    • 2015
  • In this paper, Ulta-WideBand (UWB) channel measurement and modeling based on compressive sampling (CS) are proposed. The sparsity of the channel impulse response (CIR) of the UWB signal in frequency domain enables the proposed channel measurement to have a low-complexity and to provide a comparable performance compared with the existing approaches especially used for the indoor geo-localization purpose. Furthermore, to improve the performance under noisy situation, the soft thresholding method is also investigated in solving the optimization problem for signal recovery of CS. Via numerical results, the proposed channel measurement and modeling are evaluated with the real measured data in terms of location estimation error, bandwidth, and compression ratio for indoor geo-localization using UWB system.

Error Correction Algorithm of Position-Coded Pattern for Hybrid Indoor Localization (위치패턴 기반 하이브리드 실내 측위를 위한 위치 인식 오류 보정 알고리즘)

  • Kim, Sanghoon;Lee, Seunggol;Kim, Yoo-Sung;Park, Jaehyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.2
    • /
    • pp.119-124
    • /
    • 2013
  • Recent increasing demand on the indoor localization requires more advanced and hybrid technology. This paper proposes an application of the hybrid indoor localization method based on a position-coded pattern that can be used with other existing indoor localization techniques such as vision, beacon, or landmark technique. To reduce the pattern-recognition error rate, the error detection and correction algorithm was applied based on Hamming code. The indoor localization experiments based on the proposed algorithm were performed by using a QCIF-grade CMOS sensor and a position-coded pattern with an area of $1.7{\times}1.7mm^2$. The experiments have shown that the position recognition error ratio was less than 0.9 % with 0.4 mm localization accuracy. The results suggest that the proposed method could be feasibly applied for the localization of the indoor mobile service robots.

To increase positioning accuracy in an IPS environment WPS Search Algorithm Design (IPS 환경에서 위치 정확도를 높이기 위한 WPS 탐색 알고리즘 설계)

  • Lee, Hyoun-Sup;Shim, Man-Taek;Jang, Si-Woong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.75-76
    • /
    • 2022
  • WPS is a system that finds the location of a current moving object through information of a wireless AP. The current location is determined by utilizing the outdoor and indoor AP signal strength characteristics. Even if the map is configured for the first service, the map information of the DB built by the variability of the AP signal cannot be 100% reliable in the case of outdoor. Therefore, various algorithms are needed to increase the accuracy of WPS. This paper proposes a system to increase positioning accuracy by applying various methods to determine the current position of a moving object.

  • PDF