• Title/Summary/Keyword: 실내시험

Search Result 1,531, Processing Time 0.026 seconds

Strength Characteristics of Mortar Mixture Soil with Oyster shell (굴패각을 혼입한 모르타르 혼합토의 강도특성 연구)

  • 윤길림;김병탁;김준형;채영수;서승남;심재설
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.5
    • /
    • pp.51-60
    • /
    • 2001
  • 연안역 굴양식장에서 발생하여 폐기물로 분류되어 불법으로 버려지는 굴패각을 파쇄하여 혼합한 모르타르 혼합토의 특성을 규명하고자 압축강도 시험을 포함한 다양한 실내시험을 수행하였다. 압축강도시험을 위하여 준비한 모르타르 공시체는 시멘트, 물, 모래 및 굴패각을 다양한 배합비로 혼합하여 제작하였다. 강도시험결과에 따르면 분쇄한 굴패각의 비율이 최대 모래중량의 40%까지 혼합한 경우에도 굴패각을 섞지 않은 일반 모르타르 혼합토에 비하여 압축강도가 크게 감소하지 않았다. 본 연구에서 수행한 압축강도실험을 분석한 결과, 다양한 크기로 파쇄한 굴패각을 적절한 혼합비의 모래 및 시멘트와 배합하여 사용한다면 건설재료로서의 재활용 가능성이 충분한 것으로 판단되었다.

  • PDF

Mechanical Properties of Oil Pollution Sand Due to Changes in the Viscosity of Oil (점도 변화에 따른 유류오염 모래의 역학적 특성)

  • Hong, Seung Seo;Bae, Gu-Jin;Kim, YoungSeok
    • The Journal of Engineering Geology
    • /
    • v.25 no.4
    • /
    • pp.577-585
    • /
    • 2015
  • Contamination of soil due to an oil spill influences its subsequent behavior. An investigation was conducted to study the effect of oil viscosity on compaction characteristics, coefficient of permeability, and shear strength. Water permeability was also determined by using Kerosene, Engine oil, and Crude-oil as contaminants. The test results indicate that the compaction characteristics are influenced by oil contamination. Direct shear test was conducted to investigate the effect of oil in the pore space in sandy ground. angle of internal friction of sand (based on total stress condition) decreases due to presence of oil within the pore spaces in sand.

실내 공기청정기 인증을 위한 성능시험방법

  • 김용진
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.33 no.1
    • /
    • pp.22-27
    • /
    • 2004
  • 현재 국내외의 공기청정기의 재품성능 인증을 위한 입자상물질, 탈취 등의 시험방법 및 규격의 동향과 국내 공기청정기 기술에 대하여 고찰하고자 한다.

  • PDF

A Reliability Analysis on Sliding of Offshore Gravity Platform (중력식 해양구조물의 활훈에 대한 신뢰도해석)

  • 이인모;이명재
    • Geotechnical Engineering
    • /
    • v.2 no.3
    • /
    • pp.37-50
    • /
    • 1986
  • The uncertainties encountered in the stability analysis for the foundation of offshore structures on clay are formulated in probabilistic terms and used to evaluate the reliability of the foundation design. The major sources of uncertainty are: soil properties, f.ave loads, and methods of analysis. The major part of the uncertainty in safety factor is contributed by the uncertainty in the undrained shear strength. All sources of uncertainties that affect the shear strength of clay are modeled and systematically analyzed. The in situ undrained shear strengths are evaluated by laboratory tests and cone penetration tests. The undrained shear strengths from the laboratory test and CPT, respectively at Statfjord B site in the North Sea, are used as an example in risk analysis. Using the CPT alone, the failure probability on sliding of gravity platform at Statfjord B is much larger than the failure probability using the laboratory undrained shear strengths. The major uncertainty of using the CPT as the estimate of th2 undrained shear strength of clay results from the correlation between the cone resistance and the undrained shear strength.

  • PDF

The study on the selection of performance test conditions for indoor and outdoor experiments of snowfall in winter (겨울철 강설 실내외 실험을 위한 성능 시험 조건 선정에 관한 연구)

  • Kim, Byeongtaek;In, Sora;Kim, Sangjo
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.12
    • /
    • pp.1149-1154
    • /
    • 2022
  • The purpose of this research is to select representative observation stations for winter observation equipment performance tests and to present indoor and outdoor conditions for performance tests by considering snowfall, snowfall days, latitude, and altitude distribution for observation stations operated by the Korea Meteorological Administration. Using the snowfall data observed during the winter for 30 years (1981-2010), ten representative observation stations are selected to consider the classification of snowfall days by class, latitude, and altitude distribution of observation stations. As a result of analysis, the suitable point for outdoor experiments was selected as Daegwallyeong, the average number of snowfall days and snowfall days of 5cm or more were 57.5 and 13.2 days, respectively. The indoor experimental conditions are considered to be suitable under temperatures of -15 to 5℃ and humidity of 50% or higher. Results of this research can be used as basic information for conditions and test beds for performance tests of equipment that can respond to heavy snow disasters in winter.

Analysis of the Waterproof and Reinforcement Effect according to Slope Improvement of Aging Reservoir using Supplementary Cementitious Material (시멘트 대체재료를 사용한 노후 저수지의 사면 개량에 따른 차수 및 보강 효과 분석)

  • Song, Sang-Huwon;Cho, Dae-Sung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.1
    • /
    • pp.30-39
    • /
    • 2022
  • In this study, laboratory test, program analysis, and test construction in the field were performed to utilize Supplementary Cementitious Material (SCM) developed by recycled resources for slope reinforcement as slope improvement material for aging reservoir, and the results were analyzed. As results of the laboratory test, it was analyzed that the mixing ratio of SCM was appropriate by 9 %, and the coef. of permeability was decreased by about 10,000times, indicating a value close to that of the waterproof material applied in Korea. In addition, as a result of program analysis and test construction, it was analyzed that seepage did not occur in the part of reinforced using SCM and showed a higher safety facto r than domestic criteria. Therefore, since it shows sufficient waterproof and reinforcing effects in aging reservoir, it is judged that the slope improvement using SCM can replace the cement for repair and reinforcement method.

A Study on the Development and Characteristics of Eco-friendly None Alkaline Silica Sol Grouting Material (친환경 비알칼리성 실리카졸 지반주입재의 개발과 특성에 관한 연구)

  • Hyunsang Kang;Daeseouk Chung
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.4
    • /
    • pp.747-756
    • /
    • 2023
  • Purpose: In this study, a grout material mixed using non-alkaline silica-based materials, which is an eco-friendly injection material to stabilize ground, is investigated to improve conventional problems. Method: The homogel specimens of Eco-Friendly Non-Alkaline Silica Sol (ENASS) and L.W. and S.G.R., representative silicate grouting are manufactured. Physicochemical and engineering properties of the specimens are evaluated in laboratory with uniaxial compression strength, hydraulic conductivity, shrinkage, chemical resistance, elution, fish poison, waste leaching. Result: Laboratory test results show that the ENASS was superior in all aspects compared to the existing injection matirial. The suitability of the grout material with ENASS is investigated with filed tests. Conclusion: The results of laboratory and field tests demonstrates that the grout material with ENASS is eco-friendly material that increases the strength, decreases the permeability, and discharges pollutants without leaching.

Stability Analysis of Mine Roadway Using Laboratory Tests and In-situ Rock Mass Classification (실내시험과 현장암반분류를 이용한 광산갱도의 안정성 해석)

  • Kim, Jong Woo;Kim, Min Sik;Lee, Dong Kil;Park, Chan;Jo, Young Do;Park, Sam Gyu
    • Tunnel and Underground Space
    • /
    • v.24 no.3
    • /
    • pp.212-223
    • /
    • 2014
  • In this study, the stability analyses for metal mine roadways at a great depth were performed. In-situ stress measurements using hydrofracturing, numerous laboratory tests for rock cores and GSI & RMR classifications were conducted in order to find the physical properties of both intact rock and in-situ rock mass distributed in the studied metal mine. Through the scenario analysis and probabilistic assessment on the results of rock mass classification, the in-situ ground conditions of mine roadways were divided into the best, the average and the worst cases, respectively. The roadway stabilities corresponding to the respective conditions were assessed by way of the elasto-plastic analysis. In addition, the appropriate roadway shapes and the support patterns were examined through the numerical analyses considering the blast damaged zone around roadway. It was finally shown to be necessary to reduce the radius of roadway roof curvature and/or to install the crown reinforcement in order to enhance the stability of studied mine roadways.