• Title/Summary/Keyword: 신호 우선신호

Search Result 501, Processing Time 0.03 seconds

Empirical Study of the PLSP (Priority Land and Signal Preemption for Emergency Vehicles (긴급차량의 우선차로 및 우선신호 도입효과 -청주시를 대상으로-)

  • Lee, Jun;Ham, Seung Hee;Lee, Sang Jo
    • Journal of the Society of Disaster Information
    • /
    • v.16 no.4
    • /
    • pp.650-657
    • /
    • 2020
  • Purpose: In this study, the effectiveness of pilot project of PLSP (Priority Lane and Signal Preference) system, which was operated in Cheongju City, was analyzed. Method: The priority signal was operated by a police officer switching to a blue signal when approaching a fire truck through CCTV, and the priority lane of emergency vehicles was displayed on the road to enable preferential traffic. VISSIM simulation analysis was performed for the 1.2km section (3.8km) of the pilot project section and vehicle data was analyzed for some of the test operation sections. Result: Simulation analysis shows that the moving speed of the emergency vehicle can be increased by 42 km/h with the introduction of PLSP, which can be increased by approximately twice the speed. Travel time was reduced by about 3 minutes, and considerable improvements of 69% compared to cities that are not operating was analyzed. The pilot operation of Cheongju City showed a time-shortening effect of about two minutes on average, with the average time reaching 4 minutes and 14 seconds in the first period and the average time reaching 5 minutes and 40 seconds in the second period. Conclusion: The system has been shown to be effective in minimizing time-to-site arrival of emergency vehicles.

Effect Analysis on Emergency Vehicle Priority System for Securing Golden Time: Targeting on Cheongju City (골든타임 확보를 위한 긴급차 우선신호시스템의 효과 분석: 청주시를 대상으로)

  • Jeong, Keesin;Kim, Kitae
    • Fire Science and Engineering
    • /
    • v.33 no.3
    • /
    • pp.138-142
    • /
    • 2019
  • By securing golden time, this study analyzed the effects of an emergency vehicle priority system in Cheongju, North Chungcheong province. Until the scene of a fire is reached, severe obstacles in the street, such as traffic congestion, cars coming forward, non-cooperative vehicles etc., are significant. To solve these problems of road obstacles, it is essential to adopt an emergency vehicle priority system. From April 2017 to June 2018 (1 year and 2 months, 426 days), the dispatch time and date, fire truck moving distance and required time, traffic signal control section and pass time, and shortening time, were measured. This study selected 140 cases consisting of five heavy traffic and frequent dispatch routes out of 293 cases. The effects of the emergency vehicle priority system were excellent. Overall, it took 3 min 3 s to pass 1 km on an uncontrolled traffic signal section. On the other hand, it took 1 min 23 s to pass 1 km on the same section that was controlled. The shortening time to pass 1 km was 1 min 40 s, showing a 45.4% reduction. This means that the 15 min driving time can be reduced to 6 min and 49 s. From this result, an emergency vehicle priority system should be implemented nationwide as soon as possible.

Traffic Signal Control Strategy for Passive Tram Signal Priority on City Arterial (도시부 간선도로의 고정식 트램 우선신호를 위한 교통신호운영 전략)

  • Jeong, Young-Je;Kim, Young-Chan;Kim, Dae-Ho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.10 no.1
    • /
    • pp.27-41
    • /
    • 2011
  • This research proposes new tram signal coordination model, called MAXBAND MILP-Tram for a passive tram signal priority strategy. The proposed model was formulated based on the MAXBAND model that was a traditional arterial signal optimization model. The model could calculate the bandwidth solutions for both general-purpose-lane traffic and median-tram-lane traffic. Lower progression speed are applied for the tram traffic considering lower running speed and dwell time at the stations. A phase sequence procedure determines the green times and left-turn phase sequences for tram traffic in median tram lane. To estimate the performance of the MILP-Tram model, the control delay of trams were estimated using the micro simulation model, VISSIM. The analysis results showed 57 percent decrease of the tram compared to the conventional signal timing model. The delay for car, however, increased 18 percent. The sensitivity analysis indicated that the passive tram signal priority strategy using the offset and phase sequence optimization was effective in reducing the person delay under the congested traffic condition.

A Passive Traffic Signal Priority Control Algorithm for Emergency Vehicles (긴급차량 우선신호 센터제어 알고리즘 개발)

  • Lee, Jongwoo;Lee, Soong-bong;Lee, Jinsoo;Um, Ki Hun;Lee, Young-Ihn
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.16 no.3
    • /
    • pp.110-119
    • /
    • 2017
  • This study develops a passive traffic signal priority control algorithm for emergency vehicles. The passive priority control estimates and applies signal times for each signalized intersection on the emergency vehicle's route when an emergency call is received. As signals are controlled before the emergency vehicle leaves for its destination, it is possible to clear the queues at each intersection more effectively. Most of the previous studies applied preemption, which ends green time of cross streets when the emergency vehicle arrives at each intersection. This study applies green extension and early green in order not to shift the order of phases, and guarantees minimum green time for each phase. Simulation results show that the delay of emergency vehicles decreases when the signals are controlled. It is expected that delays can be decreased further by integrating the active priority control with the passive priority control algorithm presented in this study.

Design of Data Link Protocol Performance Analysis Tool for Railway Signaling Communication Protocol (철도신호용 통신 프로토콜을 위한 데이터링크 성능분석 툴 설계)

  • 황종규;이재호;강문호;박용진
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.10e
    • /
    • pp.673-675
    • /
    • 2002
  • 본 논문에서는 신뢰성 있는 통신을 요구하는 철도신호용 정보전송을 위해 설계한 프로토콜과 이 설계된 프로토콜의 데이터 링크제어의 성능분석을 위한 시뮬레이터의 개발에 대해 설명한다. 우선 철도신호용 통신 프로토콜의 성능분석을 위해 Matlab/Simulink 윈도우상의 데이터 링크제어 시스템 화면에서 사용자 인터페이스 블록을 통해 통신 파라미터들을 선택하여 시뮬레이션을 행할 수 있는 시뮬레이션 툴과, Matlab이 제공하는 Rs232통신용API 기능을 이용하여 철도 신호장치간의 통신 프로토콜을 PC상에서 에뮬레이션 할 수 있는 시뮬레이터를 설계하였다.

  • PDF

A Selection Method of Implementation Area for Emergency Vehicle Preemption System Using Dispatch Data Analysis (출동현황자료 분석을 통한 재난대비 긴급차량 우선신호제어 시스템 도입지역 선정방안 연구)

  • Sung, Joong Gi;Ha, Dongik
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.15 no.2
    • /
    • pp.24-35
    • /
    • 2016
  • Emergency Vehicle Preemption(EVP) is an operation method which helps to improve response condition of Emergency Vehicle(EV) and it has not yet been introduced in Korea. In order to implement the system, it requires step-by-step plan and selecting a priority area for trial operation. Since a municipal government such as Seoul is too large so it is limited in time and cost to analyze the whole area. Therefore, quantitative and effective selection method for priority area is critical. The aim of this study is to propose a selection method of implementation area for EVP system using the dispatch data analysis. This study also determined the priority area for EVP implementation by analyzing the dispatch data in Seoul and conducted a simulation to evaluate the effects of implementing EVP.

Narrow-band Interference Suppression in Direct Sequence Spread Spectrum Systems Using a Lattice IIR Notch Filter (DS-확산대역 시스템에서 격자형 IIR 노치필터를 이용한 협대역 간섭신호 제거 알고리듬)

  • 최준원;양윤기;조남익
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.4B
    • /
    • pp.447-456
    • /
    • 2001
  • 본 논문에서는 DS-확산대역 시스템에서 격자형 IIR 노치필터를 이용하여 협대역 간섭신호를 제거한다. 이를 위하여 우선 갑섭신호의 주파수와 파워가 격자형 IIR 노치필터에 의ㅏ형 추정된다. 그리고 또 다른 IIR 노치필터를 수긴기 닾에 위치시키고 노치의 위치가 추정된 갑섭신호의 주파수에 있도록 한다. 그러나 단워원 위에 영점이 존재하는 IIR 노치필터는 간섭신호 뿐만 아니라 노치부분의 신호 성분도 제거하므로 데이터의 왜곡이 발생하게 된다. 따라서 이러한 데이터의 왜곡을 줄이기 위해서 필터의 노치 깊이를 조절하는 알고리듬을 개발하였다. 이를 위해 노치필터 출력의 신호 대 잡음비를 필터 파라미터에 대한 식으로 유도하고 이를 최대로 하는 최적의 노치 깊이를 구하였다. 시뮬레이션 결과 제안한 알고리듬이 기존의 FIR 노치필터나 FIR LMS 알고리듬에 비해 좋은 성능을 갖는다는 것을 확인할 수 있다.

  • PDF

Adaptability Analysis of Emergency Preemption System in Field Operation (긴급차량 우선신호시스템 현장운영에 따른 적용성 분석)

  • Kim, Sang-Yeon;Ko, Kwang Yong;Park, Soon Yong;Jeong, Young Gje;Lee, Choul Ki
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.16 no.3
    • /
    • pp.95-109
    • /
    • 2017
  • The golden time of emergency vehicle is directly connected to the public safety. Therefore, national attention has increased to cut down the emergency vehicle's travel time. In order to shorten the intial dispatch time of it, emergency preemption system was installed at five intersections, and after test operation, whether it could be introduced in the country was estimated. We analyzed the effect of the traffic volume, emergency vehicle's travel time, and queue length under preemption and non-preemption. In the verification of the emergency preemption system, it was confirmed that the emergency vehicle's travel time was reduced from 350% to 24% compared to non-preemption system(TOD). In the saturated condition, queue length were remained 15 minutes and near saturated condition was about 30 or 45 minutes. At the non-saturated condition, the queue length's difference between emergency preemption system and general signal was small.

Control Strategy of Transit Signal Priority by S-BRT Driveway (S-BRT 주행로별 대중교통 우선신호 제어 전략)

  • Kim, Minji;Han, Yohee;Kim, Youngchan
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.5
    • /
    • pp.78-89
    • /
    • 2022
  • Super - Bus Rapid Transit (S-BRT), adding the advantages of urban railroads to BRT, has emerged to solve the problem of low speed and reliability of the existing BRT. Notably, the S-BRT driveway is classified into exclusive lanes and roads, as BRT, in the domestic guidelines. However, S-BRT and BRT have different operating goals and characteristics, so it is necessary to systematize the S-BRT driveway. Therefore, this study classified an S-BRT driveway into exclusive lane, shared lane with overtaking lane, and shared lane without overtaking lane based on domestic conditions. Subsequently, a control strategy for transit signal priority in each driveway was presented by the study based on the characteristics of the driveway to achieve the S-BRT target service level. Finally, the S-BRT target service level was almost achieved, and the travel speed was high and increased in the order respectively in the exclusive lane, shared lane with overtaking lane, and shared lane without overtaking lane in the study. Hence, it is important to operate a transit signal priority considering the characteristics of each driveway when operating the S-BRT. In essence, this study is expected to be used as a reference for driveway design and transit signal priority operation when introducing S-BRT in each local government in the future.

Robust Extraction of Heartbeat Signals from Mobile Facial Videos (모바일 얼굴 비디오로부터 심박 신호의 강건한 추출)

  • Lomaliza, Jean-Pierre;Park, Hanhoon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.20 no.1
    • /
    • pp.51-56
    • /
    • 2019
  • This paper proposes an improved heartbeat signal extraction method for ballistocardiography(BCG)-based heart-rate measurement on mobile environment. First, from a mobile facial video, a handshake-free head motion signal is extracted by tracking facial features and background features at the same time. Then, a novel signal periodicity computation method is proposed to accurately separate out the heartbeat signal from the head motion signal. The proposed method could robustly extract heartbeat signals from mobile facial videos, and enabled more accurate heart rate measurement (measurement errors were reduced by 3-4 bpm) compared to the existing method.