• 제목/요약/키워드: 신호 분류

검색결과 1,233건 처리시간 0.028초

웨이블릿 변환 기반 CNN을 활용한 무선 신호 분류 (Classification of Radio Signals Using Wavelet Transform Based CNN)

  • 송민석;임재성;이민우
    • 한국정보통신학회논문지
    • /
    • 제26권8호
    • /
    • pp.1222-1230
    • /
    • 2022
  • 다양한 변조 기법을 사용하여 저피탐 능력을 갖춘 신호원들이 증가하면서, 신호의 변조 방식을 분류하는 연구가 꾸준히 진행되고 있다. 최근 신호 간섭이나 잡음 환경에서 수신 신호 분류의 성능 개선을 위하여 전처리 과정으로 FFT를 이용하는 CNN(Convolutional Neural Network) 딥러닝 기법이 제안되었다. 하지만 윈도우가 고정되는 FFT의 특성상 탐지 신호의 시간에 따른 변화를 정확히 분류해내지 못한다. 따라서 본 논문에서는 시간 영역과 주파수 영역에서 높은 해상도를 가지고 또한 다양한 유형의 신호를 시간 및 주파수 영역에서 동시에 표현할 수 있는 웨이블릿 변환(wavelet transform)을 전처리 과정으로 사용하는 CNN 모델을 제안한다. 시뮬레이션을 통해 제안하는 웨이블릿 변환 방식이 FFT 변환 방식에 비해 정확도와 학습 속도 측면에서 SNR 변화에 무관하게 우수한 성능을 보이고, 특히 낮은 SNR일 때 더욱 큰 차이를 보임을 입증하였다.

EMG 신호의 패턴 분류를 위한 간단한 SOM 방식 (Simple SOM Method for Pattern Classification of the EMG Signals)

  • 임중규;엄기환
    • 전자공학회논문지SC
    • /
    • 제38권4호
    • /
    • pp.31-36
    • /
    • 2001
  • 본 논문에서는 근육의 움직임에 의해 유발되는 전기적 선호인 근전도(EMG) 신호를 신경회로망을 통해 분류하여 인체의 움직임을 파악하는 방법을 제안한다. 신호분류를 위한 신경회로망으로 학습에 의해 스스로 출력뉴런을 구성하는 SOM을 사용하였으며, 기존의 방식과 다르게 전처리 과정 없이 신호자세를 SOM의 입력으로 사용하여 패턴을 분류하는 간단한 방식이다. 실험과 시뮬레이션을 통해 제안한 방식의 유용성을 확인하였다.

  • PDF

BP알고리즘과 SVM을 이용한 심전도 신호의 패턴 분류 (Pattern Classification for Biomedical Signal using BP Algorithm and SVM)

  • 김만선;이상용
    • 한국지능시스템학회논문지
    • /
    • 제14권1호
    • /
    • pp.82-87
    • /
    • 2004
  • 심전도 데이터는 심장의 전기적인 신호의 다양한 파형으로 이루어지며, 이와 같은 파형을 분석하고 분류하기 위하여 데이터마이닝 기법을 이용할 수 있다. 심전도신호를 분류하기 위한 기존의 연구들은 왜곡된 특징추출과 과적합 등 문제점을 가지고 있다. 본 연구에서는 이와 같은 문제점들을 해결하기 위하여 BP 알고리즘과 SVM을 이용하여 심전도 신호를 분류해 보았다 그 결과 SVM이 신경망에서 발생하는 과적합을 효과적으로 방지하고, 유일한 전역해를 보장함으로써, 일반화 성능에서 우수함을 보이고 있다는 사실을 확인하였다.

혼합모델 및 다중 가설 검정을 이용한 신호와 잡음의 분류 (Separating Signals and Noises Using Mixture Model and Multiple Testing)

  • 박해상;유시원;전치혁
    • 응용통계연구
    • /
    • 제22권4호
    • /
    • pp.759-770
    • /
    • 2009
  • 본 논문은 신호와 잡음이 혼합된 관측치로부터 신호 관측치를 분류하는 문제를 다룬다. 잡음은 가우시안 분포를 따르고 신호는 감마 분포를 따른다고 가정할 때 관측치의 분포는 가우시안과 감마의 혼합 분포를 따르게 된다. EM 알고리즘을 통해 혼합 모델의 모수를 추정하고 신호 및 잡음을 분류하는 것을 다중 가설 검정으로 간주하여 베이즈 오류를 바탕으로 분류를 위한 경계치를 설정한다. 제안하는 방법을 분광 데이터에 근거하여 철강 제품에서 개재물 유무를 검출하는 문제에 적용하였고 별도의 시뮬레이션 데이터를 통해 성능의 우수성을 보였다.

2차원 푸리에변환과 주성분분석을 기반한 초음파 용접검사의 신호분류기법 (Classification Technique for Ultrasonic Weld Inspection Signals using a Neural Network based on 2-dimensional fourier Transform and Principle Component Analysis)

  • 김재준
    • 비파괴검사학회지
    • /
    • 제24권6호
    • /
    • pp.590-596
    • /
    • 2004
  • 신경망 기반의 신호 분류 시스템은 비파괴 검사 시 추출되는 많은 양의 데이터를 처리하기 위한 방법으로 꾸준히 이용되고 있다. 비파괴검사 방법 중, 초음파 탐상법은 용접 지역에서 결함들을 찾기 위하여 비파괴 검사에서 일반적으로 사용되고 있는 추세다. 초음파 탐상법의 중요한 특징은 특정 신호에서 발생하는 불연속성을 판별해내는 능력이다. 지금까지의 보편화되어 있는 기술은 신호를 분류하기 위해 각각의 A-scan 신호를 처리하는 반면 본 논문에서는 이웃하는 A-scan 신호의 정보를 기반으로 하는 2차원 푸리에 변환(Fourier transform)과 주성분 분석(principal component analysis) 기법을 이용하여 특징 벡터를 추출, 분류하는 방법을 제시하고자 한다.

다중 클래스 SVM을 이용한 EMD 기반의 부정맥 신호 분류 (EMD based Cardiac Arrhythmia Classification using Multi-class SVM)

  • 이금분;조범준
    • 한국정보통신학회논문지
    • /
    • 제14권1호
    • /
    • pp.16-22
    • /
    • 2010
  • 심전도 신호 분석 및 부정맥 분류는 환자를 진단하고 치료하는데 중요한 역할을 한다. 부정맥은 맥박이 불규칙한 상태로 심실빈맥(VT)이나 심실세동(VF) 환자에게 심각한 위협이 될 수 있다. 심방조기수축(APC)과 상심실성빈맥(SVT), 심실조기수축(PVC)은 심실빈맥(VT)만큼 치명적이지는 않지만 심장질환을 진단하는데 중요한 부정맥이다. 본 논문은 2~3개의 부정맥 분류만을 고려한 기존의 방법을 극복하고 다양한 부정맥을 분류하기 위한 새로운 방법을 제시한다. 심전도 신호의 특징 추출을 위해서 EMD 방법으로 신호를 분해하여 IMFs를 얻는다. 입력 데이터의 양은 분류기 성능에 영향을 미치므로 신호 데이터의 차원을 감소시키기 위해 Burg 알고리즘을 IMFs에 적용하여 AR 계수를 구하고 여러 개의 이진 분류기를 결합한 다중 클래스 SVM의 입력으로 사용한다. 최적의 SVM 성능 파라미터를 선택하고 부정맥 분류에 적용한 결과 검출의 정확성은 96.8%~99.5%였다. 실험 결과는 제안한 EMD 방법에 의한 전처리 및 특징 추출과 다중 클래스 SVM에 의한 부정맥 분류의 유용성을 보여준다.

음악신호와 뇌파 특징의 회귀 모델 기반 감정 인식을 통한 음악 분류 시스템 (Music classification system through emotion recognition based on regression model of music signal and electroencephalogram features)

  • 이주환;김진영;정동기;김형국
    • 한국음향학회지
    • /
    • 제41권2호
    • /
    • pp.115-121
    • /
    • 2022
  • 본 논문에서는 음악 청취 시에 나타나는 뇌파 특징을 이용하여 사용자 감정에 따른 음악 분류 시스템을 제안한다. 제안된 시스템에서는 뇌파 신호로부터 추출한 감정별 뇌파 특징과 음악신호에서 추출한 청각적 특징 간의 관계를 회귀 심층신경망을 통해 학습한다. 실제 적용 시에는 이러한 회귀모델을 기반으로 제안된 시스템은 입력되는 음악의 청각 특성에 매핑된 뇌파 신호 특징을 자동으로 생성하고, 이 특징을 주의집중 기반의 심층신경망에 적용함으로써 음악을 자동으로 분류한다. 실험결과는 제안된 자동 음악분류 프레임 워크의 음악 분류 정확도를 제시한다.

Adverse Effects on EEGs and Bio-Signals Coupling on Improving Machine Learning-Based Classification Performances

  • SuJin Bak
    • 한국컴퓨터정보학회논문지
    • /
    • 제28권10호
    • /
    • pp.133-153
    • /
    • 2023
  • 본 논문에서 우리는 뇌 신호 측정 기술 중 하나인 뇌전도를 활용한 새로운 접근방식을 제안한다. 전통적으로 연구자들은 감정 상태의 분류성능을 향상시키기 위해 뇌전도 신호와 생체신호를 결합해왔다. 우리의 목표는 뇌전도와 결합된 생체신호의 상호작용 효과를 탐구하고, 뇌전도+생체신호의 조합이 뇌전도 단독사용 또는 임의로 생성된 의사 무작위 신호와 결합한 경우에 비해 감정 상태의 분류 정확도를 향상시킬 수 있는지를 확인한다. 네 가지 특징추출 방법을 사용하여 두 개의 공개 데이터셋에서 얻은 데이터 기반의 뇌전도, 뇌전도+생체신호, 뇌전도+생체신호+무작위신호, 및 뇌전도+무작위신호의 네 가지 조합을 조사했다. 감정 상태 (작업 대 휴식 상태)는 서포트 벡터 머신과 장단기 기억망 분류기를 사용하여 분류했다. 우리의 결과는 가장 높은 정확도를 가진 서포트 벡터 머신과 고속 퓨리에 변환을 사용할 때 뇌전도+생체신호의 평균 오류율이 뇌전도+무작위신호와 뇌전도 단독 신호만을 사용한 경우에 비해 각각 4.7% 및 6.5% 높았음을 보여주었다. 우리는 또한 다양한 무작위 신호를 결합하여 뇌전도+생체신호의 오류율을 철저하게 분석했다. 뇌전도+생체신호+무작위신호의 오류율 패턴은 초기에는 깊은 이중 감소 현상으로 인해 감소하다가 차원의 저주로 인해 증가하는 V자 모양을 나타냈다. 결과적으로, 우리의 연구 결과는 뇌파와 생체신호의 결합이 항상 유망한 분류성능을 보장할 수 없음을 시사한다.

감성 인식을 위한 생체 신호 패턴 분류 (Pattern Classification of Bio-information To Percept Human Emotion)

  • 황세희;박창현;심귀보
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2005년도 추계학술대회 학술발표 논문집 제15권 제2호
    • /
    • pp.385-388
    • /
    • 2005
  • 감성이란 외부의 자극에 대해 직관적이고 반사적으로 발생하는 저절로 반응하는 현상이다. 감성은 살아온 사회$\cdot$문화적 배경에 따라 흑은 현재 상태에 따라서 다르게 나타난다. 하지만 다소 개인적인 차이가 있을 수 있을지라도 개인이 속한 사회에 따라서 비슷한 상황 아래서는 비슷한 유형의 반응이 나타난다. 현재 감성 인식을 위해서 개인의 행동이나 신체적인 표현을 이용한 감성 인식 연구가 진행 중이다. 이러한 방법은 감성을 표현하는 방식에서 개인차가 커지면 효용성이 떨어질 수밖에 없다. 우리가 거짓말 탐지기를 사용하는 것처럼 본 논문에서는 감정에 따라 달라지는 개인의 생체 신호를 이용해서 감성 인식을 하고자 한다. 이를 위해서 감성에 따른 여러 가지 생체 신호를 추출하고 감성 인식을 위한 생체 신호의 특징점을 파악하고 패턴분류를 하고자 한다.

  • PDF

생체신호 분석과 K-Means 분류 알고리즘을 이용한 감정 인식 (Emotion Recognition using Bio-signal Measurements & K-Means Classifier)

  • 차상훈;김성재;김다영;김광백;윤상석
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2018년도 추계학술대회
    • /
    • pp.386-388
    • /
    • 2018
  • 본 논문은 사회적 상호작용 결여로 감정 기복이 심하고 스트레스로 인해 정서불안 증세를 보이는 자폐 범주성 장애아동의 감정 상태를 인식하기 위한 목적으로 4가지 감정 자극에 대하여 생체신호를 분석하고 K-Means 알고리즘을 적용하여 획득한 정보로부터 감정 상태를 인식하는 방법을 제안한다. 실험구성은 참가자가 주어지는 감정자극 영상을 시청하는 동안 맥파 및 피부전도 센서를 이용하여 생체신호를 측정한 후 자율신경 비율을 나타내는 LF/HF의 심박 정보와 피부 반응 정보를 정량적으로 분석하였고, 추출된 정보로부터 K-Means 알고리즘을 적용하여 감정 상태를 분류하는 과정으로 진행된다. 총 3명의 일반인을 대상으로 실험을 진행하였으며, 4가지 감정 자극에 대한 실험을 수행한 결과, 생체신호 측정을 이용한 감정인식 방법이 제시되는 감정 자극을 충분히 분류할 수 있음을 확인할 수 있었다.

  • PDF