• 제목/요약/키워드: 신호변환기

검색결과 983건 처리시간 0.022초

라즈베리 파이를 이용한 실내관리 시스템 (A Indoor Management System using Raspberry Pi)

  • 정수;이종진;정원기
    • 한국산학기술학회논문지
    • /
    • 제17권9호
    • /
    • pp.745-752
    • /
    • 2016
  • 모든 사물들이 인터넷에 연결되는 사물 인터넷 시대에 즈음하여 본 논문에서는 라즈베리파이와 지그비를 이용하여 실내의 LED 조명등과 멀티탭을 on/off 하고 조명등의 밝기와 출입문의 전자 도어락을 스마트폰으로 원격 제어하는 시스템을 제안한다. 라즈베리파이에 적외선 송신 모듈을 연결하여 리모트컨트롤이 가능한 에어컨 등의 가전제품을 스마트폰 어플로 제어했으며 실내의 영상, 실내온도, 조도 등을 모니터링 했다. 리모트컨트롤이 가능한 모든 가전제품들을 원격 제어하기 위해서는 IR 송신코드를 알아내어야 하는데 AVR 마이크로컨트롤러를 이용해서 IR 송신코드를 알아내는 방법을 제안했다. 상용의 사무실용 도어락을 개조하여 원격으로 개폐하는 방법을 제안했다. LED 조명의 밝기는 ATmega88로 PWM 신호를 발생시켜서 0에서 10 레벨까지 컨트롤했고 멀티탭의 제어는 ATmega32와 포토커플러, TRIAC를 사용하였다. 측정된 온도 및 조도는 Tiny44A를 사용하여 A/D 변환되고 SPI 통신으로 라즈베리파이에게 송신된다. 카메라는 라즈베리파이의 CSI(Camera Serial Interface) 헤드에 연결하였다. 스마트 멀티탭은 일정시간 동안 on 시킬 수 있고 미래시점에 on이 되도록 예약할 수 있다. 대기전력을 줄이기 위해서는 수동으로 멀티탭의 콘센트를 뽑거나 스위치을 꺼면 되지만 스위치를 꺼지 않고 외출한 경우에도 스마트폰으로 원격 제어하여 스위치를 꺼면 대기전력을 줄이는데 많은 도움이 될 것이다.

매장 문화재 공간 분포 결정을 위한 지하투과레이더 영상 분석 자동화 기법 탐색 (Automated Analyses of Ground-Penetrating Radar Images to Determine Spatial Distribution of Buried Cultural Heritage)

  • 권문희;김승섭
    • 자원환경지질
    • /
    • 제55권5호
    • /
    • pp.551-561
    • /
    • 2022
  • 지구물리탐사기법은 매장 문화재 조사에 필요한 높은 해상도의 지하 구조 영상 생성과 매장 유구의 정확한 위치 결정하는 데 매우 유용하다. 이 연구에서는 경주 신라왕경 중심방의 고해상도 지하투과레이더 영상에서 유구의 규칙적인 배열이나 선형 구조를 자동적으로 구분하기 위하여 영상처리 기법인 영상 특징 추출과 영상분할 기법을 적용하였다. 영상 특징 추출의 대상은 유구의 원형 적심과 선형의 도로 및 담장으로 캐니 윤곽선 검출(Canny edge detection)과 허프 변환(Hough Transform) 알고리듬을 적용하였다. 캐니 윤곽선 검출 알고리듬으로 검출된 윤곽선 이미지에 허프 변환을 적용하여 유구의 위치를 탐사 영상에서 자동 결정하고자 하였으나, 탐사 지역별로 매개변수를 달리해서 적용해야 한다는 제약이 있었다. 영상 분할 기법의 경우 연결요소 분석 알고리듬과 QGIS에서 제공하는 Orfeo Toolbox (OTB)를 이용한 객체기반 영상분석을 적용하였다. 연결 요소 분석 결과에서, 유구에 의한 신호들이 연결된 요소들로 효과적으로 인식되었지만 하나의 유구가 여러 요소로 분할되어 인식되는 경우도 발생함을 확인하였다. 객체기반 영상분석에서는 평균이동(Large-Scale Mean-Shift, LSMS) 영상 분할을 적용하여 각 분할 영역에 대한 화소 정보가 포함된 벡터 레이어를 우선 생성하였고, 유구를 포함하는 영역과 포함하지 않는 영역을 선별하여 훈련 모델을 생성하였다. 이 훈련모델에 기반한 랜덤포레스트 분류기를 이용해 LSMS 영상분할 벡터 레이어에서 유구를 포함하는 영역과 그렇지 않은 영역이 자동 분류 될 수 있음을 확인하였다. 이러한 자동 분류방법을 매장 문화재 지하투과레이더 영상에 적용한다면 유구 발굴 계획에 활용가능한 일관성 있는 결과를 얻을 것으로 기대한다.

PET 영상의 정량적 개선을 위한 리스트-이벤트 데이터 재추출 (List-event Data Resampling for Quantitative Improvement of PET Image)

  • 우상근;유정우;김지민;강주현;임상무;김경민
    • 한국의학물리학회지:의학물리
    • /
    • 제23권4호
    • /
    • pp.309-316
    • /
    • 2012
  • 다중영상화기술은 진단 및 치료 반응평가의 성능향상을 위하여 활발히 연구되고 있으며 하드웨어의 통합에도 불구하고 기기간의 획득방법의 차이에 따라 영상간의 불일치와 계수부족으로 인하여 정합도를 떨어뜨린다. 이에 본 연구에서는 소동물 PET 리스트모드 데이터의 저장형식을 분석하고 잡음 및 통계적 특성을 향상시키기 위하여 이벤트 데이터를 재추출하여 정량적으로 개선된 PET 영상을 획득하고자 하였다. 소동물 리스트모드 Inveon PET 데이터는 소동물에 37 MBq/0.1 ml를 꼬리정맥에 주사하고 60분 후 10분 동안 정적데이터를 획득하였다. 생체신호와 같이 획득된 리스트모드 데이터형식은 48 비트의 패킷크기로 이루어져 있으며 패킷 내에서는 8 비트의 헤더와 40 비트의 payload 영역으로 나누어져 있다. 사이노그램 생성은 그레이코드로 각 패킷의 순서와 흐름을 평가하고 각 패킷의 순서를 CPU에서 검출기위치 변환과 단순 증가 그리고 비모수 부트스트랩 기법을 이용하여 재추출하여 새로운 사이노그램을 생성하였다. 영상은 3 span과 31 ring difference로 설정하여 생성된 사이노그램은 산란 및 감쇠보정을 고려하지 않고 16부분 집합으로 4회 반복하는 OSEM 2D 알고리즘을 이용하여 재구성하였다. 획득된 PET 데이터의 헤더정보에서의 동시계수의 총수는 1,394만 계수였으며, 리스트-이벤트 데이터의 패킷을 분석한 동시계수의 총수는 1,293만 계수였다. PET 데이터의 단순 증가는 최대값이 1.336에서 1.743으로 향상되었으나 잡음이 같이 증가됨을 확인하였다. PET 데이터 재추출 성능은 순차적인 패킷의 payload 값을 시프트연산을 통해 데이터의 위치를 이동시킴으로써 특정 잡음이 제거되거나 대조도가 향상되는 영상을 획득할 수 있었다. 부트스트랩 재추출 기법은 영상의 잡음과 통계적 특성이 개선된 PET 영상을 제공하여 다중영상화시 정합도를 향상시켜 질환의 조기 진단 성능을 향상시킬 수 있을 것으로 기대된다.