• Title/Summary/Keyword: 신축성 밴드

Search Result 7, Processing Time 0.023 seconds

A Study on the Electrical Resistivity of Graphene Added Carbon Black Composite Electrode with Tensile Strain (인장변형에 따른 그래핀복합 카본블랙전극의 저항변화연구)

  • Lee, T.W.;Lee, H.S.;Park, H.H.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.1
    • /
    • pp.55-61
    • /
    • 2015
  • Stretchable electrode materials are focused to apply to flexible device such as e-skin and wearable computer. Used as a flexible electrode, increase in electrical resistance should be minimalized under physical strain as bend, stretch and twist. Carbon black is one of candidates, for it has many advantages of low cost, simple processing, and especially reduction in resistivity with stretching. However electrical conductivity of carbon black is relatively low to be used for electrodes. Instead graphene is one of the promising electronic materials which have great electrical conductivity and flexibility. So it is expected that graphene added carbon black may be proper to be used for stretchable electrode. In this study, under stretching electrical property of graphene added carbon black composite electrode was investigated. Mechanical stretching induced cracks in electrode which means breakage of conductive path. However stretching induced aligned graphene enhanced connectivity of carbon fillers and maintained conductive network. Above all, electronic structure of carbon electrode was changed to conduct electrons effectively under stretching by adding graphene. In conclusion, an addition of graphene gives potential of carbon black composite as a stretchable electrode.

Brassiere Design for Drooping Breasts Utilizing Suspensory System (현수시스템을 활용한 하수유방용 브래지어 설계)

  • Sohn, Boo-hyun;Min, You-Suk;Kweon, Soo-ae
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.39 no.4
    • /
    • pp.560-575
    • /
    • 2015
  • This study developed brassieres using a suspension system with the elastic panel on the inside of the brassiere cup to replace the wires for 20s women with large and elongated breasts. The following results were obtained by analyzing clothing pressure and a subjective evaluation of brassieres with elastic panels at the bottom or side of the various reduction ratios and with the shoulder straps of the brassiere. Brassieres with dual panels (rather than with only the bottom panel) lowered clothing pressure as well as improved wearing comfort and function. Compared to brassieres with a panel of 10%, brassieres with a panel of 15% lowered clothing pressure and provided superior wearing comfort. In this case, the higher the reduction ratio of the side panels increased clothing pressure on the shoulder, but provided superior well-fit, bust-up, and vibration restraint. To reduce the reduction ratio of the side panel decreased clothing pressure on the shoulder and decreased support functions. Therefore, the reduction ratio of the side panels should be determined by preferable functions such as wearing comfort that depend on the needs of the wearer. It is suggested that a brassiere with a dual elastic panel can replace the brassiere wire.

Characterization of Elongation Behavior According to Sewing Conditions for Elastic Bands on Woven Fabrics (비신축성 직물의 고무 밴드 봉제 조건에 따른 신장 특성 분석)

  • Eom, Ran-i;Lee, Yejin
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.45 no.4
    • /
    • pp.648-660
    • /
    • 2021
  • This study analyzes how sewing conditions for elastic bands on woven fabrics affect elongation. The directions of the elastic bands were vertical, horizontal, vertical and horizontal crossing, and horizontal and vertical crossing. Intervals between the elastic bands were 3.0 cm and 6.0 cm. The woven fabric was tailored for the elastic band sewing using warp, weft, and bias. Consequently, it was possible to visually confirm elongation differences according to the sewing condition of the elastic bands. A detailed examination demonstrated that the horizontal or vertical placement of elastic bands tailored in a crosswise direction produces high vertical elongation and low horizontal contraction. However, elastic bands sewed in crossing directions, regardless of warp and weft directions, resulted in both high vertical elongation and high horizontal contraction. In all cases, the more elastic bands were used, the higher the horizontal elongation. In conclusion, appropriate placements of elastic bands on woven fabric increases motion convenience.

Highly Elastic Two-wire Transmission Line E-textile Band for Smart Wearable Circuit Formation (스마트 웨어러블 회로 구성을 위한 고신축성 이선 전송선형 전자섬유 밴드)

  • Roh, Jung-Sim
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.46 no.2
    • /
    • pp.367-374
    • /
    • 2022
  • Herein, a highly elastic e-textile band with a two-wire transmission line was designed and fabricated for smart clothing applications. A conductive yarn with a very uniform low electrical resistance of 0.0357 Ω/cm was developed and used for the signal and ground lines. To control the elasticity of the e-textile band, spandex yarns were added in the warp direction during knitting and the tension was adjusted. As the length of the e-textile band increased, its RF performance deteriorated. Furthermore, the frequency corresponding to -3 dB S21 was lower in the 30% stretched band than in the unstretched band. For the e-textile bands with lengths 10, 50, and 100 cm, the frequencies corresponding to -3 dB S21 were 107.77, 24.56, and 13.02 MHz when not stretched, and 88.74, 22.02, and 12.60 MHz when stretched by 30%. The fabricated bands were flatter, more flexible, and more elastic than transmission line cables; thus, they can be easily integrated into wearables and smart clothing. However, to increase RF performance and achieve optimum utilization, future studies must focus on the fabrication of transmission lines with lower resistance and reduced distance between the signal and ground lines, and thus the number of transmission lines can be increased.

Wearable based Electrocardiogram Sensing Clothes for Monitoring of Vital Signal (생체신호 측정을 위한 웨어러블 기반의 심전도 측정 의복)

  • Yu, Ki-Youp;Han, Ki-Tae;Kim, Ju-Hyun;Kim, Jong-Hun;Chung, Kyung-Yong;Lee, Jung-Hyun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2009.11a
    • /
    • pp.277-278
    • /
    • 2009
  • 차세대 하이테크 스마트 의류는 복합 차원에서의 감성적인 요소를 섬유 패션기술에 IT융합 기술을 이용하여 제공하고 있다. 생체신호를 이용한 감성은 모호하여 정량적이고 객관적인 측정이 어렵고, 그 표현도 제한된 감성 어휘에 의하여 나타나기 때문에 구체적으로 파악하는 것은 어려운 일이다. 이를 위하여 제품의 기능적 측면뿐만 아니라 정서적 감정과 선호도가 반영된 제품의 설계나 디자인 또한 요구되고 있다. 본 논문에서는 생체신호 측정을 위한 웨어러블 기반의 심전도 측정 의복을 제안하였다. 착용자가 평소 자주 입는 티셔츠를 응용하여 답답해하거나 불편하지 않게 제작하고 소매 형태로 신축성있는 소재를 사용한다. 인체의 형태에 따라 의복과 바이오센서의 전극이 안정적으로 밀착될 수 있도록 고탄력 밴드를 이용하여 일자형으로 제작하였다. 심전도 측정 의복을 착용에 의해 수집된 심전도 ECG 파형을 수집하고 심박변화율을 계산하는 시뮬레이션을 개발한다.

Organotitanium Chemistry (I). Synthesis and Molecular Structure of Dichlorodicarboxylatotitanium (IV) (유기-티탄 화학 (제1보). Dichlorodicarboxylatotitanium (IV)의 합성 및 분자구조)

  • Young Sun Uh;Hoosung Lee;Youn Soo Sohn
    • Journal of the Korean Chemical Society
    • /
    • v.17 no.2
    • /
    • pp.115-121
    • /
    • 1973
  • Crystalline products were obtained when$TiCl_4$ was reacted in dichloromethane with acetic, propionic, crotonic, benzoic, furoic and salicylic acids. Chemical analysis has shown that these were all dichlorodicarboxylatotitanium (IV). Cryoscopy of dichlorodipropionatotitanium (IV) indicated the carboxylato-complexes are dimeric. In the IR spectra of these complexes two strong bands both assigned to asymmetric carbonyl stretching vibration have been observed in the region$1500 - 1700cm^{-1}$ and the NMR spectrum of dichlorodipropionatotitanium (IV) has also shown two triplets and two quartets, which indicate that there are two chemically unequivalent carboxylato-ligands in the dimer $[TiCl_2(OOCR)_2]_2$. Their molecular structure was proposed to be bis-carboxo-bridged dimer.

  • PDF

Crosslinked Composite Polymer Electrolyte Membranes Based On Diblock Copolymer and Phosphotungstic Acid (디블록 공중합체와 인텅스텐산을 이용한 가교형 복합 고분자 전해질막)

  • Kim, Jong-Hak;Koh, Joo-Hwan;Park, Jung-Tae;Seo, Jin-Ah;Kim, Jong-Hwa;Jho, Young-Choong
    • Membrane Journal
    • /
    • v.18 no.2
    • /
    • pp.116-123
    • /
    • 2008
  • Proton conductive hybrid nanocomposite polymer electrolyte membranes comprising polystyrene-5-poly (hydroxyethyl methacrylate) (PS-b-PHEMA), sulfosuccinic acid (SA) and phosphotungstic acid (PWA) were prepared by varying PWA concentrations. The PHEMA block was thermally crosslinked by SA via the esterification reaction between -OH of PHEMA and -COOH of SA. Upon the incorporation of PWA into the diblock copolymer, the symmetric stretching bands of the $SO_3^-$ group at $1187cm^{-1}$ shifted to a lower wavenumber at $1158cm^{-1}$, demonstrating that the PWA particles strongly interact with the sulfonic acid groups of SA. When the concentration of PWA was increased to 30wt%, the proton conductivity of the composite membrane at room temperature increased from 0.045 to 0.062 S/cm, presumably due to the intrinsic conductivity of the PWA particles and the enhanced acidity of the sulfonic acid in the membranes. The membrane containing 30wt% of PWA exhibited a proton conductivity of 0.126 S/cm at $100^{\circ}C$. Thermal stability of the composite membranes was also enhanced by introducing PWA nanoparticles.