협동적 여과(CF) 시스템은 구현의 용이성과 뛰어난 성능으로 널리 활용되고 있다. 그러나 이 시스템은 데이터 희소성 신상품 추천 불가, 추천 근거에 대한 설명 부족 등의 문제점을 포함하고 있어 이를 해결하기 위한 많은 연구가 진행되었다. 데이터 희소성 문제는 데이터의 누적에 따라 해결될 수 있지만, 협동적 여과 기법의 특성상 새로이 출시되는 품목에 대한 추천이 불가능하다. 이를 해결하기 위해 내용 기반(CB) 기법을 같이 사용하는 연구들이 제안되었다. 또한 협동적 여과 시스템은 추천 과정에 있어 추천 근거에 대한 설명을 제공하지 않는다. 본 연구에서는 추천에 대한 설명 기능을 포함하고 있는 선호 단어를 활용한 내용기반 예측 시스템을 제안한다. 이 시스템은 새로이 출시되는 영화에 대해 사용자의 영화에 대한 평가 정보를 예측하며, 추천의 근거가 되는 선호 단어를 제시한다. 또한 기존의 내용기반 예측 시스템에서 일어나는 속성 비매칭 문제로 인한 성능 저하를 막기 위해 기호 네트워크를 활용한 성능 개선 방법을 제안한다. 성능 비교를 위해 EachMovie 데이터베이스와 IMDb 사의 영화 홍보 데이터를 사용하였다.
휴대폰, PDA등 모바일 단말기의 급속한 진화와 광범위한 보급으로 인하여 모바일 웹 서비스가 빠르게 확산되고 있으며 모바일 컨텐츠 시장 또한 급성장하고 있다. 이에 따른 새로운 멀티미디어 컨텐츠의 활발한 공급은 모바일 웹 사용자들에게 많은 멀티미디어를 획득할 수 있는 기회를 제공하는 동시에 정보과부하로 인한 컨텐츠 검색의 어려움을 겪게 하고 있다. 본 연구는 신상품에 대한 니즈가 높은 모바일 멀티미디어 컨텐츠의 특성과 기존 유선 웹 환경에 비해 열악한 모바일 웹 환경의 제약 사항을 고려하여, 모바일 웹 서비스 이용 고객이 보다 적은 노력과 비용으로 원하는 멀티미디어 컨텐츠를 신속하게 찾을 수 있도록 지원하는 개인화 된 멀티미디어 컨텐츠 추천 방법론을 개발하는 것이다. 이를 위하여 기존 추천시스템에서 대표적으로 사용되는 협업필터링(Collaborative Filtering) 기법의 한계를 보완하기 위하여 내용기반 필터링 기법(Content-based Filtering)을 결합한 하이브리드 추천 기법을 개발하였다. 제안한 하이브리드 기법은 모바일 환경에서 적은 계산으로도 높은 추천 성능과 함께 신상품추천이 가능한 방법이며, 이를 구현하기 위하여 멀티미디어 컨텐츠 추천시스템, MOBICORS-music(MOBIIe Contents Recommender System for Music)을 개발하였다.
정보 기술과 인터넷의 발전은 멀티미디어 컨텐츠의 양에 있어서 폭발적인 성장을 가져 왔으며 이러한 멀티미디어 컨텐츠 양의 증가는 이용자의 요구에 맞는 멀티미디어 컨텐츠 추천에 대한 필요성을 더 증가 시켰다. 현재까지 일반상품과 멀티미디어 컨텐츠 추천을 위한 기법에는 협업필터링 (CF: Collaborative Filtering)이 있다. 하지만 기존의 CF 기법은 이미지가 갖고 있는 시각적 특징을 제대로 표현하지 못하고 있으며, 입력 데이터의 희박성 (Sparsity) 문제와 신상품 추천 문제 그리고 선호도의 동적인 변화 문제를 포함하고 있기 때문에 이미지 컨텐츠 추천에는 적합하지 않다. 이와 같은 기존의 CF기법의 단점을 해결하기 위해서 본 논문에서는 새로운 이미지 추천 방법으로 FBCF (Feature Based Collaborative Filtering) 기법을 제안한다. FBCF 기법은 시각적 특징을 선호도에 따라 군집화한 새로운 사용자 프로파일 구성방법을 제시하며, 선호도 피드백을 통하여 구매자의 현재 성향을 추천에 반영할 수 있다. 실제 모바일 이미지 데이터를 사용한 실험에서 FBCF 기법이 기존의 CF 기법보다 400% 향상된 성능을 보임을 확인할 수 있다.
대부분의 신상품들은 시장에서 급격히 사라질 뿐만 아니라 기존 상품들의 매출감소를 불러온다. 이처럼 수명주기가 짧은 상품으로 인해 소매상들은 과다한 재고를 보유하게 될 뿐만 아니라 소비자들은 자신들의 선호를 맞는 제품들을 발견하는데 어려움을 겪는다. 이런 문제를 해결에 하는데 있어서 추천 시스템은 좋은 해결방법이 될 수 있다. 그러나 대부분의 추천 시스템들은 소비자의 고정된 선호를 이용하기 때문에 변화하는 소비자의 선호를 반영하지 못하는 문제가 있다. 이러한 문제를 해결하기 위하여 본 연구에서는 시간에 따라 변화하는 소비자의 선호를 반영한 추천 방법론을 제안하였다. 제안한 방법론은 소비자의 동적 선호 프로파일 작성, 네이버 형성, 추천 리스트 작성의 3 단계로 구성되어 있으며, 모바일 이미지 거래 데이터를 이용하여 제안된 방법론의 유용성을 검증하였다. 시험결과 제시된 방법론의 추천 정확도가 전통적인 협업필터링의 정확도 보다 높았다. 이러한 결과를 통해, 본 연구에서 제한한 방법론이 짧은 수명주기를 가진 제품을 추천하는데 효과적이라는 결론을 내릴 수 있다. 따라서 향후 제안된 방법론을 현업에 적용하여 실제적 유용성을 검증할 필요가 있다.
소셜네트워킹서비스와 쇼핑몰을 결합하면 오프라인 거래에서처럼 단골 관계를 형성할 수 있다. 한번이라도 물품을 구매한 고객은 SNS의 팔로우(Follow) 기능을 이용하여 자동으로 단골고객으로 등록하여, 구매자와 생산자와의 관계가 일회성에 그치지 않고 향후에도 지속될 수 있게 하여 잠재고객이 되고, 장기적으로 재구매가 이루어지게 한다. 단골이 된 고객에게 생산자는 신상품 출하 시 객관적인 물품정보 외에 재배하는 동안의 농장 모습이나 농작물의 성장과정 등 생생한 근황과, 파종에서 수확까지의 숨겨진 이야기를 통해 자신이 농사지으며 전원생활을 하는듯한 감성을 자극한다. 소비자는 자신의 SNS 홈에서 기존의 단골 관계인 생산자의 파종, 농사, 수확, 신상품 등의 소식을 타임라인에서 확인하여 필요한 상품을 원클릭(one click)으로 구매할 수 있다. 생산자는 소비자에게 뉴스 및 할인 등의 정보를 제공하여 단골로 만드는 고객 관리가 가능하고, 저장법이나 요리법 등의 다양한 사용법을 안내하며 새로운 물품을 추천하거나 홍보를 할 수 있다. 이러한 장점은 기존의 전자상거래에서 상품의 판매와 홍보가 분리되어 링크를 통해 외부로 연결되어야 하는 문제에서 벗어나 판매와 홍보가 하나의 계정 안에서 수행하도록 하여 사이트 접근성을 높여준다. 이처럼 SNS의 인맥 마케팅 기능에 더하여 시스템은 생산자의 판매 물품을 자동 분류한 카테고리로 소비자의 SNS 홈 페이지에 쇼핑물의 기능을 제공하여 소비자가 원하는 상품을 검색하고 구매할 수 있으며 구매는 자동으로 소비자와 생산자를 단골관계로 연결해준다. 또한 구매자 간에도 구매한 상품에 대한 구매경험을 공유하고, 상품추천, 구매후기 작성 및 기존 구매후기의 재배포가 용이하다. 이처럼 서로 알지 못하던 구매자 사이의 소통도 가능하게 하여, 상품을 추천하고 소식을 확산시키는 것이 'SNS 몰'의 가장 큰 특징이다.
구매자와의 관계지속을 위한 관계 확산형 비즈니스 모델의 가장 큰 특징은 한번이라도 물품을 구매한 고객은 SNS(Social Networking Service)의 팔로우(Follow) 기능을 이용하여 자동으로 단골고객으로 등록하여, 구매자와 생산자와의 관계가 일회성에 그치지 않고 향후에도 지속될 수 있게 하여 잠재고객이 되고, 장기적으로 재구매가 이루어지게 한다. 단골이 된 고객에게 생산자는 신상품 출하 시 객관적인 물품정보 외에 재배하는 동안의 농장 모습이나 농작물의 성장과정 등 생생한 근황과, 파종에서 수확까지의 숨겨진 이야기를 통해 자신이 농사지으며 전원생활을 하는듯한 감성을 자극한다. 또한, 생산자는 저장법이나 요리법 등의 다양한 사용법을 안내하며 새로운 물품을 추천하거나 홍보를 할 수 있다. 이러한 장점은 기존의 전자상거래에서 상품의 판매와 홍보가 분리되어 링크를 통해 외부로 연결되어야 하는 문제에서 벗어나 판매와 홍보가 하나의 계정 안에서 수행하도록 하여 사이트 접근성을 높여준다. 또한 구매자간에도 상품을 추천하고 소식을 확산하게 하여 구매자는 구매한 상품에 대한 구매경험을 공유하고, 추천, 구매후기 작성 및 기존 구매후기를 재배포하여 서로 알지 못하던 구매자 사이의 소통을 가능하게 한다는 것이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.