Annual Conference on Human and Language Technology
/
2006.10e
/
pp.7-14
/
2006
본 연구에서는 신문 기사에 대한 실증적 언어 분석을 목적으로 하여, <21세기 세종계획>에 의해 구축된 대용량의 신문 기사 말뭉치를 다양한 각도로 계량화하여 분석한다. 신문 기사를 표제, 전문, 본문의 구성으로 나누고 각 구성의 특징에 따라 형태 분석 말뭉치, 형태의미 분석 말뭉치, 구문 분석 말뭉치를 이용하여 분석한다. 본 연구는 대량의 신문 기사 말뭉치를 이용한 계량적 방법이라는데 의의가 있다 이러한 연구 방법을 통하여 기존의 직관을 이용한 연구 방법들과 차별화 된 실증적 연구로서 신문 이론을 검증하고, 신문 기사의 새로운 언어 현상을 발견할 수 있을 것이다.
Annual Conference on Human and Language Technology
/
2012.10a
/
pp.154-156
/
2012
영한 기계번역 시스템의 개발을 위해서는 여러 가지 사전이 필요하고, 다앙한 모호성 해소를 위한 연구를 위한 데이터가 필요하며, 번역 시스템의 테스트를 위해 많은 영어 문장이 필요하다. 따라서 영어 말뭉치를 구축하여 이로부터 사전에 필요한 정보, 모호성 해소 연구에 필요한 데이터, 번역 테스트를 위한 문장 등을 추출할 필요가 있다. 본 논문에서는 영어 말뭉치를 구축하기 위해 인터넷 영어 신문 사이트로부터 영어로 작성된 신문기사를 추출하는 도구를 개발하였다. 이를 통해 자동적으로 영어 신문기사를 추출하여 말뭉치를 구축할 수 있으며, 이를 통해 영한 기계번역 시스템의 성능 향상을 지원할 수 있다.
With the rapid evolution of the Internet and mobile environments, text including spelling errors such as newly-coined words and abbreviated words are widely used. These spelling errors make it difficult to develop NLP (natural language processing) applications because they decrease the readability of texts. To resolve this problem, we propose a spelling error correction model using a spelling error correction dictionary and a newspaper corpus. The proposed model has the advantage that the cost of data construction are not high because it uses a newspaper corpus, which we can easily obtain, as a training corpus. In addition, the proposed model has an advantage that additional external modules such as a morphological analyzer and a word-spacing error correction system are not required because it uses a simple string matching method based on a correction dictionary. In the experiments with a newspaper corpus and a short message corpus collected from real mobile phones, the proposed model has been shown good performances (a miss-correction rate of 7.3%, a F1-measure of 97.3%, and a false positive rate of 1.1%) in the various evaluation measures.
본 논문에서는 영어 신문 사이트를 크롤링하여 뉴스 기사를 수집하여 영어 말뭉치를 구축하는 도구를 제안한다. 클라우드 서비스를 이용함으로써 장소와 시간에 구애받지 않고 말뭉치를 지속적으로 확장시킬 수 있을 뿐만 아니라 쉽게 구축된 말뭉치를 활용할 수 있다. 제안한 도구는 수집된 영어 신문 기사에 대한 통계 정보 즉, 문장 수, 단어 수 등을 제공한다. 웹 플랫폼에서 동작하므로 여러 명이 동시에 많은 데이터를 수집할 수 있다 수집된 데이터는 자연어 처리 및 기계학습 연구에 활용될 수 있다.
The purpose of this study is to analyze newspaper articles from corpus linguistic point of view. We used a large corpus of newspaper articles built from <21st century Sejong Project> and counted occurrences of certain expressions. A newspaper article is divided into the headline, the lead and the body. We tried to figure out how to measure the characteristics of indication and compression which are typical to headlines. Then, we focused on the differences between the headline and the lead. finally, we analyzed the sentence structure and measured the ratio of the frequency of common nouns in the body. This study verifies the existing stylistic theories of newspapers and shows new aspects of language use in newspaper articles. Texts like newspaper articles are the results of human language processing and they in turn affect the development of cognitive ability of language.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2007.11a
/
pp.382-385
/
2007
본 논문은 "X라는 인물은 누구인가?"와 같은 질의어가 주어질 때, X라는 인물에 대한 나이, 직업, 학력 또는 특정 사건에서 X라는 인물의 역할에 대한 정보를 기술하는 문장을 인식하고 추출함으로써 해당 인물에 대한 신문 기사 내용을 요약하는 방법을 제시한다. 질의어 용어에 대해 가능한 많은 관련 문장을 추출하기 위하여 중심 벡터에 기반한 통계적 방법을 적용하였으며, 정확도와 재현율 성능을 개선하기 위해 위키피디어 같은 외부 지식을 사용한 중심 단어의 개선된 가중치 측도를 적용하였다. 실험 대상인 전자신문 말뭉치 상에서 출현 빈도수가 큰 20 인의 IT 인물에 대해 제안한 방법이 개선된 성능을 보임을 알 수 있었다.
본 논문에서는 효과적으로 문서를 정제할 수 있는 작업환경인 웹 기반의 정제 말뭉치 워크벤치 개발에 관하여 기술한다. 또한 정보검색의 효율성 향상, 전문용어의 자동추출, 전문용어가 쓰인 문맥의 파악 등을 위하여 정제된 문서에 포함된 과학기술 전문용어를 표시할 수 있게 하는 작업 환경도 구축하였다. 이렇게 개발된 정제 말뭉치 워크벤치와 전문용어 태깅 툴을 이용하여 과학기술과 관련된 신문 기사에서 한국어 전문용어를 태깅하고, 논문의 제목과 초록에서 한영 전문용어 쌍을 태깅하는 작업을 진행하였다.
This paper presents chunking strategy of a contiguous nouns sequence using semantic class. We call contiguous nouns which can be treated like a noun the compound noun phrase. We use noun pairs extracted from a syntactic tagged corpus and their semantic class pairs for chunking of the compound noun phrase. For reliability, these noun pairs and semantic classes are built from a syntactic tagged corpus and detailed dictionary in the Sejong corpus. The compound noun phrase of arbitrary length can also be chunked by these information. The 38,940 pairs of 'left noun - right noun', 65,629 pairs of 'left noun - semantic class of right noun', 46,094 pairs of 'semantic class of left noun - right noun', and 45,243 pairs of 'semantic class of left noun - semantic class of right noun' are used for compound noun phrase chunking. The test data are untrained 1,000 sentences with contiguous nouns of length more than 2randomly selected from Sejong morphological tagged corpus. Our experimental result is 86.89% precision, 80.48% recall, and 83.56% f-measure.
In this paper, we suggest a Coreference Resolution system for Korean using Mention Pair with SVM. The system introduced in this paper, also be able to extract Mention from document which is including automatically tagged name entity information, dependency trees and POS tags. We also built a corpus, including 214 documents with Coreference tags, referencing online news and Wikipedia for training the system and testing the system's performance. The corpus had 14 documents from online news, along with 200 question-and-answer documents from Wikipedia. When we tested the system by corpus, the performance of the system was extracted by MUC-F1 55.68%, B-cube-F1 57.19%, and CEAFE-F1 61.75%.
Seo, Hyung-Won;Kim, Hyung-Chul;Kim, Jae-Hoon;Lee, Kong-Joo
Annual Conference on Human and Language Technology
/
2009.10a
/
pp.145-150
/
2009
이 논문은 한글 뉴스 기사의 댓글에 대한 감정 분류 방법을 제안한다. 제안된 방법은 기계학습을 이용하는데 본 논문에서는 자질의 가중치를 재조정하는 좀 색다른 방법을 제안한다. 일반적으로 댓글은 독자들이 특정 기사에 대해서 어떠한 감정을 가지고 있는지를 파악하는 중요한 단서가 된다. 그런데 독자들의 감정은 가사에 어떤 분야에 속하느냐에 영향을 받는다. 예를 들면 정치 기사는 부정적인 댓글은 많이 포함하고 있으며 인물 기사는 긍정적인 기사를 많이 포함한다. 이 논문은 이와 같은 댓글의 속성을 이용해서 기사의 원문과 기사의 분야 정보를 이용하여 가중치를 조정한다. 제안된 시스템의 성능을 평가하기 위해 신문 기사와 댓글을 수집하여 감정 말뭉치를 구축하였으며 감정자질을 추출하기 위해 감정 사전을 구축하였다. 제안된 시스템의 $F_1$ 척도는 92.2%였으며 원문의 감정 단어와 분야 정보가 댓글의 감정을 분류하는데 중요한 자질임을 알 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.