본 논문에서는 오브젝트가 서로 겹쳤다가 분리되는 상황 하에서도 오브젝트를 정확히 추적할 수 있는 칼라관계(color relationship)특징 벡터를 제안한다. 오브젝트의 정확한 추적경로와 이벤트 검출을 위하여 신뢰성 있는 특징 벡터 추출은 필수적이다. 향상된 오브젝트 추적을 위해 면적. 크기뿐만 아니라 본 논문에서 제안한 칼라관계 특징 벡터를 사용한다. 실험 영상에 적용한 결과 제안된 방법을 사용하였을 경우 멀티오브젝트의 영상에서 겹침(occlusion)과 나타남(disocclusion)이 발생하는 경우에도 정확한 경로 추적이 이루어짐을 볼 수 있었다
동적 스펙트럼 접속 방식에서 각 이차사용자는 자신의 성능을 높이기 위하여 채널의 상태를 추적하여 채널이 사용되지 않을 가능성이 가장 높은 채널을 선택하게 된다. 다수의 이차사용자가 동일한 동적 스펙트럼 접속 방식에 따라 동작한다면, 대부분의 이차사용자는 비슷한 결과의 채널 상태 추적 정보를 얻게 된다. 이로 인해 각 이차사용자가 동일한 채널을 선택할 가능성이 높아지고, 이차사용자 사이의 충돌이 발생할 가능성이 높아진다. 본 논문은 이러한 이차사용자 사이의 충돌을 줄이기 위하여 다른 이차사용자의 신뢰 벡터를 추적하여 그 결과를 채널 선택에 이용하는 동적 스펙트럼 접속 방식을 제안한다. 시뮬레이션 결과는 본 논문에서 제안한 방식이 다른 이차사용자를 고려하지 않는 방식에 비해 성능이 더 나아진다는 것을 보여준다.
최근 주목을 받고 있는 Particle Filtering은 실제 객체 추적에서 발생하는 비선형, 비 가우시안 분포를 가지는 상태 벡터의 사후확률을 추정하기 위한 Monte Carlo 시뮬레이션에 기반을 둔 추적 방법론이다. 우리는 본 논문에서 Particle Filtering을 이용한 객체 추적성능을 향상시킬 수 있는 두 가지 방법론을 제안한다. 첫 번째는 확률이 가장 낮은 샘플을 이전 프레임의 추정된 상태 벡터로 대치하는 피드백 방법론이고, 두 번째는 객체 확률 분포를 추정된 객체 후보영역에 역투영하여 신뢰구간을 구함으로써 추적 박스의 정확도를 향상시키는 방법이다. 또한, 실험을 통해 구한 추적 샘플의 진화 방정식을 제시하였다. 우리는 다양한 상황이 설정된 실험 데이터 셋을 구성하여 실험을 실시하여 제안한 방법론의 우수성을 입증하였다.
본 논문에서는 교통 정보 제공 시스템에서 기본적으로 필요로 하는 신뢰성 있는 교통데이터 획득을 위한 교통 영상검지기를 ASIC을 이용하여 효과적으로 구현할 수 있는 구조를 제안한다. 본 논문의 교통 영상검지기에서는 먼저 저가의 CMOS 이미지 센서를 이용하여 영상을 획득한다. 그 다음에 영상을 여러 개의 블록으로 분할하고 블록 매칭 기법을 이용하여 각 블록의 모션 벡터, 즉 각 블록이 다음 프레임에서 어느 방향으로 얼마만큼의 거리를 이동했는지를 추적한다. 그 다음에는 블록들의 모션 벡터로부터 자동차의 속도와 크기를 추출한다. 본 논문의 교통 검지기는 실시간으로 시내 도로나 고속도로에서 실시간으로 교통 정보를 검지할 수 있을 뿐만 아니라 보정이 필요 없어 설치가 매우 간편하다.
목표물의 위치 정보를 알아내고 그것을 추적하기 위한 대표적인 방법 중의 하나로 차영상을 이용한 움직임 영역 검출 기법이 지금까지 많이 사용되어 왔다. 이 방법은 배경이 고정되어 있는 상황이라는 가정이 필요하며, 카메라가 움직이는 경우에는 전역 움직임 보상 기법이 반드시 필요하게 된다. 따라서 본 논문에서는 카메라가 움직이는 경우에도 차영상 정보를 이용하여 실제 이동하는 목표물을 포함하는 최소 사각형을 정확하게 찾는 방법을 제안한다. 전역 움직임 보상을 위해서 움직임 계수를 구할 때, 오류 벡터로 인해서 전역 움직임 계수를 잘못 추정하게 되면 이동 목표물의 검출에 실패하는 결과를 낳는다. 이러한 문제점으로 인하여 여기에서는 배경 영상의 신뢰성 있는 움직임 벡터를 선별하여 보다 정확한 전역 보상이 이루어지는 알고리즘을 제안하여, 결과적으로 정확한 이동 목표물의 위치를 얻는 방법에 대해서 기술하고 있다. 제안된 기법으로 다양한 영상에 적용한 결과, 배경을 효과적으로 제거하고 목표물의 위치를 대체로 정확하게 찾을 수 있다는 것을 보여 주었다. 특히 움직이는 카메라에서 얻은 영상에 대해서는 기존의 방법보다 매우 우수한 결과를 얻는다는 것을 확인할 수 있었다.
본 연구는 목적은 PIV 시스템을 이용하여 분기관내 유동현상을 가시화하여 분기부 영역의 유동특성을 분석하는데 있다. PIV 시스템으로 유동장을 가시화하기 위해서 분기관 모델은 투명 아크릴판으로 제작하였고 작동유체와 추적입자는 각각 물과 송화가루를 사용하였다. 유동장에서 획득된 영상으로부터 속도벡터를 얻기 위해서 입자추적방법의 1-프레임 법과 2-프레임 법, 상호상관 PIV법인 2-프레임법을 사용하였다. PIV 시스템으로 측정된 실험결과의 신뢰성을 확보하기 위해서 표면구동 캐비티 유동의 속도분포를 4-프레임법으로 얻어진 기준 실험 데이터와 비교하였다. 분기관에서 뉴턴유체의 유동현상을 효과적으로 가시화하는데 필요한 상호상관 PIV방법의 2-프레임법을 적용하는 알고리즘을 개발하였고, sub-pixel과 면적보간을 사용하여 오벡터를 제거후 최종속도벡터를 얻었다. PIV를 이용한 분기관내 유동가시와 실험결과를 신뢰할 수 있는 수치해석 결과를 이용하여 검증한 결과 PIV 실험으로 얻어진 속도벡터는 수치해석의 결과와 잘 일치하였다. PIV 실험과 수치해석 결과로부터 분기관모델의 분기점 원위부에 재순환영역이 형성됨이 확인되었고 두 다른 방법을 이용한 재순환영역의 길이와 높이는 거의 동일하였다.
분산계수는 하천에서 오염물질의 혼합능을 파악할 수 있는 대표적인 인자이다. 특히 하수처리장 방류수 혼합예측과 같이 횡 방향 혼합에 대한 예측이 중요한 경우, 하천의 지형적, 수리학적 특성을 고려한 2차원 횡 분산계수의 결정이 필요하다. 2차원 횡 분산계수의 결정을 위해 기존 연구에서는 추적자실험결과로부터 경험식을 만들어 횡 분산계수 산정에 사용해왔다. 회귀분석을 통한 경험식 산정을 위해서는 충분한 데이터가 필요하지만, 2차원 추적자 실험 건수가 충분치 않아 신뢰성 높은 경험식 산정이 어려운 상황이다. 따라서 본 연구에서는 SMOTE기법을 이용하여 횡분산계수 실험데이터를 증폭시켜 이로부터 횡 분산계수 경험식을 산정하고자 한다. 또한 다중선형회귀분석을 통해 도출된 경험식의 한계를 보완하기 위해 다양한 머신러닝 기법을 적용하고, 횡 분산계수 산정에 적합한 머신러닝 기법을 제안하고자 한다. 기존 추적자실험 데이터로부터 하폭 대 수심비, 유속 대 마찰유속비, 횡 분산계수 데이터 셋을 수집하였으며, SMOTE 알고리즘의 적용을 통해 회귀분석과 머신러닝 기법 적용에 필요한 데이터그룹을 생성했다. 새롭게 생성된 데이터 셋을 포함하여 다중선형회귀분석을 통해 횡 분산계수 경험식을 결정하였으며, 새로 제안한 경험식과 기존 경험식에 대한 정확도를 비교했다. 또한 다중선형회귀분석을 통해 결정된 경험식은 횡 분산계수 예측범위에 한계를 보였기 때문에 머신러닝기법을 적용하여 다중선형회귀분석에 대한 예측성능을 평가했다. 이를 위해 머신러닝 기법으로서 서포트 벡터 머신 회귀(SVR), K근접이웃 회귀(KNN-R), 랜덤 포레스트 회귀(RFR)를 활용했다. 세 가지 머신러닝 기법을 통해 도출된 횡 분산계수와 경험식으로부터 결정된 횡 분산계수를 비교하여 예측 성능을 비교했다. 이를 통해 제한된 실험데이터 셋으로부터 2차원 횡 분산계수 산정을 위한 데이터 전처리 기법 및 횡 분산계수 산정에 적합한 머신러닝 절차와 최적 학습기법을 도출했다.
본 논문에서는 멀티미디어 콘텐츠 보호에 대한 반공모 코드를 위한 동적 멀티미디어 핑거프린팅 코드를 설계하는 알고리즘을 제안한다. 기존의 반공모 코드(ACC: Anti-Collusion Code)를 위한 멀티미디어 핑거프린팅 코드는 BIBD(Balanced Incomplete Block Design)의 접속행렬을 보수행렬로 변환하여 k를 k+1로 증대시키는 수리적 방법으로 설계되었다. 그리고 보수행렬의 코드벡터를 사용자에게 핑거프린팅 코드로 부여하고, 콘텐츠에 삽입하였다. 제안된 알고리즘에서는 사용자가 구매하는 콘텐츠로부터 특징점을 추출하고, 이를 기반으로 동적으로 핑거프린팅 코드를 설계할 수 있도록 BIBD의 v와 k+1 조건을 만족하는 반공모 코드의 후보성 코드를 코드북(Codebook)에 구축하고 ${\lambda}+1$ 조건을 만족하는 행렬(이하, Rhee행렬이라 함.)을 생성한다. 실험을 통하여 콘텐츠의 특징점 기반으로 생성된 Rhee행렬의 코드벡터는 v비트의 유의수준 ($1-{\alpha}$)에서 신뢰구간에 k가 존재하며, Rhee행렬의 각 행과 행, 열과 열 사이의 유클리디안 거리가 BIBD 기반의 보수행렬과 그래프 기반의 보수행렬과 같은 k값이 산출되었다. 더욱이 Rhee행렬의 첫 행과 첫 열은 생성과정에서 초기 점화벡터로 콘텐츠 포렌식 마크 정보가 되며, 이와 관계가 있는 나머지 코드벡터들과의 관계성이 코드북에 기록되어 있기 때문에, 공모된 코드를 추적할 때 원 핑거프린팅 코드의 상관관계 계수를 구할 필요 없이 코드북의 탐색으로 공모자를 추적이 용이하다. 따라서 본 논문에서 생성된 Rhee행렬은 수리적으로 생성된 BIBD 기반의 행렬보다 ACC로서 강인성과 충실도가 우수하다.
커널 기반 평균 이동 물체 추적(kernel-based mean-shift object tracking) 방법은 신뢰할 수 있는 물체 추적의 실시간 구현이 가능하기 때문에 최근 많은 관심을 받고 있다. 이 알고리즘은 표적 모델과 표적 후보 간의 히스토그램 유사성 비교를 통해 최적의 평균이동 벡터를 찾는데, 실시간 구현을 위해 대부분의 알고리즘에서는 색-공간의 균일 양자화를 수행한다. 하지만, 영상의 명암 분포가 편중되어 있는 경우 색-공간의 양자화 후 히스토그램 분포가 몇 몇 빈에 집중되기 때문에 히스토그램 유사성 비교의 정확도를 감소시키게 되고, 따라서 추적의 성능이 저하될 수 있다. 이러한 문제를 해결하기 위해 히스토그램 빈을 적응적으로 조절하는 비-균일 양자화 알고리즘이 제안되었으나 높은 복잡도로 인해 실시간 추적 알고리즘에 부적합한 단점을 갖고 있다. 이에 본 논문에서는 표적 모델에 대한 히스토그램 평활화를 수행한 후 색-공간의 균일 양자화를 수행하는 형태의 고속 비-균일 양자화 기법을 제안함으로써, 색-공간 양자화 후에도 표적 모델의 명암 분포가 전 색-영역에 고르게 분포되도록 함으로써 실시간 평균 이동 추적 기법의 추적 성능이 개선될 수 있도록 하였다. 제안하는 색-공간 양자화 기법을 통해 표적 모델과 비교 후보군 사이에 비교 대상이 되는 색 요소가 증가하게 되며, 보다 정확도 높은 히스토그램 유사성 결과를 얻을 수 있었다. 물체 추적용 영상을 통한 실험 결과, 제안하는 알고리즘은 복잡도 증가가 거의 발생하지 않는 동시에, 기존 비-균일 양자화 알고리즘 결과와 유사하거나 좀 더 나은 추적 결과를 보여주었다.
최근 개발된 표면영상유속계(Surface Image Velocimetry)를 이용한 유량측정기법은 비교적 짧은 시간에 급변하는 홍수량을 정확도를 유지하면서도 간편하고 안전하게 측정할 수 있다는 장점이 있다. 그러나 표면영상유속계는 현장 상황과 사용 방법에 따라 측정된 유속값의 오차가 얼마나 발생하는지에 대한 근거가 없으며, 그 오차 범위가 명확하게 제시된 바가 없기 때문에 표면영상유속계의 신뢰성에 대해 의구심을 갖는 경우가 많다. 표면영상유속계의 유속측정 원리는 일정 시간간격을 갖는 두 영상내의 입자군 이동을 추적하여 유속벡터를 산정하는 것이다. 즉, 두 영상의 탐색 영역(searching area)내에서 각 입자군의 상관계수를 계산하여 최대상관계수를 갖는 입자군을 동일 입자군으로 판별하고, 동일 입자군의 도심간 거리와 두 영상의 시간간격을 이용하여 유속을 구하게 된다. 그러므로 상관계수가 높을수록 유속값이 정확하다고 할 수 있다. 따라서 본 연구에서는 상관계수에 따른 유속측정 오차를 분석하여 상관계수에 따른 표면영상유속계의 오차범위를 결정하고자 한다. 분석방법은 활차의 속도와 영상분석을 통해 얻은 속도를 비교하여 상관계수에 따른 오차범위를 살펴보았고, 실제 적용을 위하여 개수로내의 표면유속를 측정하여 상관계수에 따른 오차를 분석하였다. 분석 결과 상관계수가 0.7 이상인 측정유속의 정확도는 10% 이내로 확인되었으며, 향후 표면영상 유속계를 이용한 유속측정시 상관계수별 오차범위를 이용하여 현장적용시 정확도 개선을 위해 많은 도움이 될 것으로 기대된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.