• Title/Summary/Keyword: 신뢰성 기반 형상 최적화

Search Result 13, Processing Time 0.026 seconds

Inverse Estimation of Fatigue Life Parameters for Spring Design Optimization (스프링 최적설계를 위한 피로수명 파라미터의 역 추정)

  • Kim, Wan-Beom;An, Da-Wn;Choi, Joo-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.345-348
    • /
    • 2011
  • 구조요소의 설계에서 유한요소해석은 매우 효과적인 방법이다. 이 방법은 시험 수행에 드는 시간과 비용을 줄여준다. 그러나 공정 과정과 환경에 의하여 생기는 입력 물성치들의 변화 때문에 우리는 유한요소해석의 결과를 전적으로 믿어서는 안 된다. 따라서 유한요소해석의 신뢰성을 증명하는 것은 매우 중요하다. 본 연구에서는 현장에 축적된 피로 수명 시험 데이터를 바탕으로 유한요소해석을 이용하여 피로수명 파라미터를 역 추정 하는 연구를 수행하였다. 베이지안 접근법을 이용하여 불확실성 피로 수명 파라미터의 사후분포를 구하였고, 마코프체인몬테카를로(Markov Chain Monte Carlo) 기법을 이용하여 역 추정된 파라미터의 샘플 데이터를 생성하였다. 얻어진 샘플 데이터를 기반으로 새로운 형상의 스프링에 대한 피로 수명을 예측한다. 신뢰성 기반 형상 최적화(RBDO)는 서스펜션 코일 스프링의 요구수명을 만족시키기 위하여 수행된다. 또한 크리깅 근사 모델은 유한요소해석의 연산 량 감소를 위해 이용한다.

  • PDF

Reliability-based Shape Optimization Using Growth Strain Method (성장-변형률법을 이용한 신뢰성 기반 형상 최적화)

  • Oh, Young-Kyu;Park, Jae-Yong;Im, Min-Gyu;Park, Jae-Yong;Han, Seog-Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.5
    • /
    • pp.637-644
    • /
    • 2010
  • This paper presents a reliability-based shape optimization (RBSO) using the growth-strain method. An actual design involves uncertain conditions such as material property, operational load, Poisson's ratio and dimensional variation. The purpose of the RBSO is to consider the variations of probabilistic constraint and performances caused by uncertainties. In this study, the growth-strain method was applied to shape optimization of reliability analysis. Even though many papers for reliability-based shape optimization in mathematical programming method and ESO (Evolutionary Structural Optimization) were published, the paper for the reliability-based shape optimization using the growth-strain method has not been applied yet. Growth-strain method is applied to performance measure approach (PMA), which has probabilistic constraints that are formulated in terms of the reliability index, is adopted to evaluate the probabilistic constraints in the change of average mises stress. Numerical examples are presented to compare the DO with the RBSO. The results of design example show that the RBSO model is more reliable than deterministic optimization. It was verified that the reliability-based shape optimization using growth-strain method are very effective for general structure. The purpose of this study is to improve structure's safety considering probabilistic variable.

Shape Optimization and Reliability Analysis of the Dovetail of the Disk of a Gas Turbine Engine (가스터빈엔진 디스크의 도브테일 형상 최적화와 신뢰도 해석)

  • Huh, Jae-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.4
    • /
    • pp.379-384
    • /
    • 2014
  • The most critical rotating parts of a gas turbine engine are turbine blades and disc, given that they must operate under severe conditions such as high turbine inlet temperature, high speeds, and high compression ratios. Owing to theses operating conditions and high rotational speed energy, some failures caused by turbine disks and blades are categorized into catastrophic and critical, respectively. To maximize the margin of structural integrity, we aim to optimize the vulnerable area of disc-blade interface region. Then, to check the robustness of the obtained optimized solution, we evaluated structural reliability under uncertainties such as dimensional tolerance and fatigue life variant. The results highlighted the necessity for and limitations of optimization which is one of deterministic methods, and pointed out the requirement for introducing reliability-based design optimization which is one of stochastic methods. Thermal-structural coupled-filed analysis and contact analysis are performed for them.

Reliability-Based Shape Optimization Under the Displacement Constraints (변위 제한 조건하에서의 신뢰성 기반 형상 최적화)

  • Oh, Young-Kyu;Park, Jae-Yong;Im, Min-Gyu;Park, Jae-Yong;Han, Seog-Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.5
    • /
    • pp.589-595
    • /
    • 2010
  • This paper presents a reliability-based shape optimization (RBSO) using the evolutionary structural optimization (ESO). An actual design involves uncertain conditions such as material property, operational load, poisson's ratio and dimensional variation. The deterministic optimization (DO) is obtained without considering of uncertainties related to the uncertainty parameters. However, the RBSO can consider the uncertainty variables because it has the probabilistic constraints. In order to determine whether the probabilistic constraint is satisfied or not, simulation techniques and approximation methods are developed. In this paper, the reliability-based shape design optimization method is proposed by utilization the reliability index approach (RIA), performance measure approach (PMA), single-loop single-vector (SLSV), adaptive-loop (ADL) are adopted to evaluate the probabilistic constraint. In order to apply the ESO method to the RBSO, a sensitivity number is defined as the change of strain energy in the displacement constraint. Numerical examples are presented to compare the DO with the RBSO. The results of design example show that the RBSO model is more reliable than deterministic optimization.

Slope Stability Analysis Considering Multi Failure Mode (다중파괴모드를 고려한 사면안정해석)

  • Kim, Hyun-Ki;Kim, Soo-Sam
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.1
    • /
    • pp.24-30
    • /
    • 2011
  • Conventional slope stability analysis is focused on calculating minimum factor of safety or maximum probability of failure. To minimize inherent uncertainty of soil properties and analytical model and to reflect various analytical models and its failure shape in slope stability analysis, slope stability analysis method considering simultaneous failure probability for multi failure mode was proposed. Linear programming recently introduced in system reliability analysis was used for calculation of simultaneous failure probability. System reliability analysis for various analytical models could be executed by this method. For application analysis for embankment, the results of this method shows that system stability of embankment calculate quantitatively.

Reliability-Based Shape Optimization Under the Stress Constraints (응력 제한조건하의 신뢰성 기반 형상 최적설계)

  • Oh, Young-Kyu;Park, Jae-Yong;Im, Min-Gyu;Park, Jae-Yong;Han, Seog-Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.4
    • /
    • pp.469-475
    • /
    • 2010
  • The objective of this study is to integrate reliability analysis into shape optimization problem using the evolutionary structural optimization (ESO) in the application example. Reliability-based shape optimization is formulated as volume minimization problem with probabilistic stress constraint under minimization max. von Mises stress and allow stress. Young's modulus, external load and thickness are considered as uncertain variables. In order to compute reliability index, four methods, i.e., reliability index approach (RIA), performance measure approach (PMA), single-loop singlevector (SLSV) and adaptive-loop (ADL), are used. Reliability-based shape optimization design process is conducted to obtain optimal shape satisfying max. von Mises stress and reliability index constraints with the above four methods, and then each result is compared with respect to numerical stability and computing time.

Bayesian Reliability Analysis Using Kriging Dimension Reduction Method(KDRM) (크리깅 기반 차원감소법을 이용한 베이지안 신뢰도 해석)

  • An, Da-Un;Choi, Joo-Ho;Won, Jun-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.3
    • /
    • pp.275-280
    • /
    • 2008
  • A technique for reliability-based design optimization(RBDO) is developed based on the Bayesian approach, which can deal with the epistemic uncertainty arising due to the limited number of data. Until recently, the conventional REDO was implemented mostly by assuming the uncertainty as aleatory which means the statistical properties are completely known. In practice, however, this is not the case due to the insufficient data for estimating the statistical information, which makes the existing RBDO methods less useful. In this study, a Bayesian reliability is introduced to take account of the epistemic uncertainty, which is defined as the lower confidence bound of the probability distribution of the original reliability. In this case, the Bayesian reliability requires double loop of the conventional reliability analyses, which can be computationally expensive. Kriging based dimension reduction method(KDRM), which is a new efficient tool for the reliability analysis, is employed to this end. The proposed method is illustrated using a couple of numerical examples.

Optimum Design of a Simple Slope considering Multi Failure Mode (다중 파괴모드를 고려한 단순 사면의 최적 설계)

  • Kim, Hyun-Ki;Shin, Min-Ho;Choi, Chan-Yong
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.6
    • /
    • pp.73-80
    • /
    • 2010
  • Conventional slope stability analysis is focused on calculating minimum factor of safety or maximum probability of failure. To minimize inherent uncertainty of soil properties and analytical model and to reflect various analytical models and its failure shape in slope stability analysis, slope stability analysis method considering simultaneous failure probability for multi failure mode was proposed. Linear programming recently introduced in system reliability analysis was used for calculation of simultaneous failure probability. System reliability analysis for various analytical models could be executed by this method. Optimum design to determine angle of a simple slope is executed for multi failure mode using linear programming. Because of complex consideration for various failure shapes and modes, it is possible to secure advanced safety by using simultaneous failure probability.

Shape Optimization of Multilayer Bellows by Using Sequential Experimental Design (순차적 실험계획법을 적용한 다층관 벨로우즈 형상 최적설계)

  • Oh, Sang-Kyun;Lee, Kwang-Ki;Suh, Chang-Hee;Jung, Yun-Chul;Kim, Young-Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.9
    • /
    • pp.1007-1013
    • /
    • 2011
  • Because of their high flexibility and durability, multilayer bellows are manufactured for use in commercial vehicles, while single-layer bellows are manufactured for use in passenger vehicles. A study based on the finite element method (FEM) and shape optimization for the single-layer bellows has been actively performed; however, until now, a study based on the FEM has rarely been performed for the multilayer bellows with gaps between the layers. This paper presents a finite-element modeling scheme for the multilayer bellows to improve simulation reliability during the evaluation of stress and flexibility. For performing shape optimization for the multilayer bellows, DOE (design of experiment) and the Kriging metamodel followed by the D-optimal method are used.

Statistical Analysis of the Springback Scatter according to the Material Strength in the Sheet Metal Forming Process (판재성형공정에서의 소재 강도에 따른 스프링백 산포의 통계분석)

  • Son, Min-Kyu;Kim, Se-Ho
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.4
    • /
    • pp.287-292
    • /
    • 2022
  • In this paper, the stochastic distribution of the springback amount is investigated for the stamping process of a U-channel shaped-product with ultra-high strength steel. Using the reliability-based design optimization technique (RBDO), stochastic distribution of process parameters is considered in the analysis including material properties and process variation. Quantification of the springback scatters is carried out with the statistical analysis method according to the material strength. It is found that the scattering amount of springback decreases while the amount of springback increases as the tensile strength of the blank material increases, which is investigated by analyzing the strain and stress distribution of the punch and die shoulder. It is noted that the proposed scheme is capable of predicting and responding to the unavoidable scattering of springback in the sheet metal forming process.