• Title/Summary/Keyword: 신고센터

Search Result 85, Processing Time 0.027 seconds

Trends in Development of Intelligent Response Technology for 112 and 119 Emergency Calls (112, 119 긴급신고 대응 지능화 기술 개발 동향)

  • M.J. Lee;H.H. Park;M.S. Baek;E.J. Kwon;S.W. Byon;Y.S. Park;E.S. Jung;H.S. Park
    • Electronics and Telecommunications Trends
    • /
    • v.38 no.3
    • /
    • pp.57-65
    • /
    • 2023
  • Emergency numbers, such as 112 and 119, are used in many countries to connect people in need with emergency services such as police, fire, and medical assistance. We describe development directions of intelligent response technology for emergency calls. The development of this technology refers to enhancing the efficiency and effectiveness of response systems by using advanced methods such as artificial intelligence, machine learning, and big data analytics. We focus on a system that assists the receptionist of an emergency call. In the future, the recognition rate and decision-making accuracy of intelligent response technologies should be improved considering characteristics of public safety and emergency domain data. Although the current technology remains at the level of assisting a receptionist, a fully autonomous response technology is expected to emerge in the future.

진흥회 소식

  • Korea Electrical Manufacturers Association
    • NEWSLETTER 전기공업
    • /
    • no.97-11 s.180
    • /
    • pp.2-7
    • /
    • 1997
  • PDF

Transaction Pattern Discrimination of Malicious Supply Chain using Tariff-Structured Big Data (관세 정형 빅데이터를 활용한 우범공급망 거래패턴 선별)

  • Kim, Seongchan;Song, Sa-Kwang;Cho, Minhee;Shin, Su-Hyun
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.2
    • /
    • pp.121-129
    • /
    • 2021
  • In this study, we try to minimize the tariff risk by constructing a hazardous cargo screening model by applying Association Rule Mining, one of the data mining techniques. For this, the risk level between supply chains is calculated using the Apriori Algorithm, which is an association analysis algorithm, using the big data of the import declaration form of the Korea Customs Service(KCS). We perform data preprocessing and association rule mining to generate a model to be used in screening the supply chain. In the preprocessing process, we extract the attributes required for rule generation from the import declaration data after the error removing process. Then, we generate the rules by using the extracted attributes as inputs to the Apriori algorithm. The generated association rule model is loaded in the KCS screening system. When the import declaration which should be checked is received, the screening system refers to the model and returns the confidence value based on the supply chain information on the import declaration data. The result will be used to determine whether to check the import case. The 5-fold cross-validation of 16.6% precision and 33.8% recall showed that import declaration data for 2 years and 6 months were divided into learning data and test data. This is a result that is about 3.4 times higher in precision and 1.5 times higher in recall than frequency-based methods. This confirms that the proposed method is an effective way to reduce tariff risks.

전자혁명 실현을 위한 방책

  • Korea Database Promotion Center
    • Digital Contents
    • /
    • no.11 s.54
    • /
    • pp.60-67
    • /
    • 1997
  • 일본 총무청에서는 행정개혁프로그램에서 행정사무절차의 간소화, 통일화, 공통화, 전자화, 페이퍼리스화 등을 추진해 신청에 따른 국민의 부담을 경감시킬 수 있도록 했다. 또한 이것에 기반하여 신청 부담 경감 대책을 추진해 신청 신고절차의 전자화 페이퍼리스화를 행정정보화 추진계획의 최종년도인 1999년도를 넘기지 않는 것을 원칙으로 내년도말까지 가능한 것에서부터 신속히 실시하기로 하는 등 행정정보화의 간소화를 추진하고 있다. 어떻게 계획되고 있는지 살펴봤다.

  • PDF

애널리시스 / 이동전화 서비스 불만의 소리 높다

  • Korea Database Promotion Center
    • Digital Contents
    • /
    • no.8 s.99
    • /
    • pp.90-91
    • /
    • 2001
  • 지난 상반기 중 국내 통신서비스 가운데 소비자 민원이 가장 많았던 분야는 이동전화서비스인 것으로 나타났다. 이는 통신위원회가 자체 설치된 '통신서비스 이용자 피해신고방'에 접수된 사례를 보면 올해 1월부터 6월까지 모두 2,876건(1일 평균 21.5건)의 소비자 민원이 접수됐으며, 이 가운데 이동전화 4개 사에 관한 민원이 1,506건(52.4%)으로 가장 많았다고 밝혔다.

  • PDF