• Title/Summary/Keyword: 신경 방사장

Search Result 5, Processing Time 0.019 seconds

A Sensitivity Analysis of Design Parameters of an Underground Radioactive Waste Repository Using a Backpropagation Neural Network (Backpropagation 인공신경망을 이용한 지하 방사성폐기물 처분장 설계 인자의 민감도 분석)

  • Kwon, S.;Cho, W.J.
    • Tunnel and Underground Space
    • /
    • v.19 no.3
    • /
    • pp.203-212
    • /
    • 2009
  • The prediction of near field behavior around an underground high-level radioactive waste repository is important for the repository design as well as the safety assessment. In this study, a sensitivity analysis for seven parameters consisted of design parameters and material properties was carried out using a three-dimensional finite difference code. From the sensitivity analysis, it was found that the effects of borehole spacing, tunnel spacing, cooling time and rock thermal conductivity were more significant than the other parameters. For getting a statistical distribution of buffer and rock temperatures around the repository, an artificial neural network, backpropagation, was applied. The reliability of the trained neural network was tested with the cases with randomly chosen input parameters. When the parameter variation is within ${\pm}10%$, the prediction from the network was found to be reliable with about a 1% error. It was possible to calculate the temperature distribution for many cases quickly with the trained neural network. The buffer and rock temperatures showed a normal distribution with means of $98^{\circ}C$ and $83.9^{\circ}C$ standard deviations of $3.82^{\circ}C$ and $3.67^{\circ}C$, respectively. Using the neural network, it was also possible to estimate the required change in design parameters for reducing the buffer and rock temperatures for $1^{\circ}C$.

Fabricating Highly Aligned Electrospun Poly(${\varepsilon}$-caprolactone) Micro/Nanofibers for Nerve Tissue Regeneration (신경세포 재생을 위한 고배열성 Poly(${\varepsilon}$-caprolactone) 마이크로/나노섬유 제조 공정에 관한 연구)

  • Yoon, Hyeon;Lee, Haeng-Nam;Park, Gil-Moon;Kim, Geun-Hyung
    • Polymer(Korea)
    • /
    • v.34 no.3
    • /
    • pp.185-190
    • /
    • 2010
  • Recently, an electrospinning process, which is one of various nanotechnologies, has been used in fabricating micro/nanosized fibers. The fabricated electrospun micro/nanofibers has been widely applied in biomedical applications, specially in tissue regeneration. In this study, we fabricated highly aligned electrospun biodegradable and biocompatible poly(${\varepsilon}$-caprolactone)(PCL) micro/nanofibers by using a modified electrospinning process supplemented with a complex electric field. From this process, we can attain highly aligned electrospun nanofibers compared to that fabricated with the normal electrospinning process. To observe the feasibility of the highly aligned electrospun mat as a biomedical scaffold, nerve cells(PC-12) was cultured and it was found that the cells those were well oriented to the direction of aligned fibers.

Gaussian Blending: Improved 3D Gaussian Splatting for Model Light-Weighting and Deep Learning-Based Performance Enhancement

  • Yeong-In Lee;Jin-Nyeong Heo;Ji-Hwan Moon;Ha-Young Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.8
    • /
    • pp.23-32
    • /
    • 2024
  • NVS (Novel View Synthesis) is a field in computer vision that reconstructs new views of a scene from a set of input views. Real-time rendering and high performance are essential for NVS technology to be effectively utilized in various applications. Recently, 3D-GS (3D Gaussian Splatting) has gained popularity due to its faster training and inference times compared to those of NeRF (Neural Radiance Fields)-based methodologies. However, since 3D-GS reconstructs a 3D (Three-Dimensional) scene by splitting and cloning (Density Control) Gaussian points, the number of Gaussian points continuously increases, causing the model to become heavier as training progresses. To address this issue, we propose two methodologies: 1) Gaussian blending, an improved density control methodology that removes unnecessary Gaussian points, and 2) a performance enhancement methodology using a depth estimation model to minimize the loss in representation caused by the blending of Gaussian points. Experiments on the Tanks and Temples Dataset show that the proposed methodologies reduce the number of Gaussian points by up to 4% while maintaining performance.

Design of Compact Circularly Polarized Microstrip Patch Antenna with T-slits Loading (T-슬릿 부설에 의한 소형 원편파 마이크로스트립 패치 안테나 설계)

  • 김영두;신경섭;원충호;이홍민
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.10
    • /
    • pp.103-108
    • /
    • 2004
  • In this paper, a compact patch antenna with four T-slits fed by crossed aperture coupling is proposed for miniaturized Portable GPS handsets. The mechanism for compact size antenna is investigated with the behavior of the currents on the radiating patch. The equivalent surface current path due to the slits is lengthened, reducing the resonant frequency at a fixed patch size. The results of embedded T-slits for compact antenna size show that the resonant frequency is significantly lowered from 2.545GHz to 1.575GHz, corresponding to a 44.65% antenna size reduction compared to reference design. Experimental results show that good CP radiation patterns are obtained and impedance bandwidth (VSWR $\leq$ 2), 3dB axial ratio are about 21MHz, 19MHz at the center resonant frequency, respectively.

Synthesis and Biodistribution of Flumazenil Derivative [F-18](3-(2-Fluoro) flumazenil for Imaging Benzodiazepine Receptor (벤조디아제핀 수용체 영상용 양전자 방출 핵종 표지 플루마제닐 유도체 [F-18](3-(2-Fluoro)flumazenil의 합성과 생체 내 분포)

  • Hong, Sung-Hyun;Jeong, Jae-Min;Chang, Young-Soo;Lee, Dong-Soo;Chung, June-Key;Cho, Jung-Hyuck;Lee, Sook-Ja;Kang, Sam-Sik;Lee, Myung-Chul
    • The Korean Journal of Nuclear Medicine
    • /
    • v.33 no.6
    • /
    • pp.527-536
    • /
    • 1999
  • Purpose: Radiotracers that bind to the central benzodiazepine receptor are useful for the investigation of various neurological and psychiatric diseases. [C-11]Flumazenil, a benzodiazepine antagonist, is the most widely used radioligand for central benzodiazepine receptor imaging by PET. We synthesized 3-(2-[F-18]fluoro)flumazenil, a new fluorine-18 ($t_{1/2}$= 110 min) labeled analogue of benzodiazepine receptor imaging agent, and evaluated in vivo for biodistribution in mice. Materials and Methods: Flumazenil (Ro 15-1788) was synthesized by a modification of the reported method. Precursor of 3-(2-[F-18]fluoro)flumazenil, the tosylated flumazenil derivative was prepared by the tosylation of the ethyl ester by ditosylethane. [F-18] labeling of tosyl substitued flumazenil precursor was performed by adding F-18 ion at $85^{\circ}C$ in the hot ceil for 20 min. The reaction mixture was trapped by C18 cartridge, washed with 10% ethanol, and eluted by 40% ethanol. Bidistribution in mice was determined after intravenous injection. Results: The total chemical yield of tosylated flumazenil derivative was ${\sim}40%$. The efficiency of labeling 3-(2-[F-18]fluoro)flumazenil was 66% with a total synthesis time of 50 min. Brain uptakes of 3-(2-[F-18]fluoro)flumazenil at 10, 30, 60 min after injection, were $2.5{\pm}0.37,\;2.2{\pm}0.26,\;2.1{\pm}0.11$ and blood activities were $3.7{\pm}0.43,\;3.3{\pm}0.07,\;3.3{\pm}0.09%ID/g$, respectively. Conclusion: We synthesized a tosylated flumazenil derivative which was successfully labeled with no-carrier-added F-18 by nucleophilic substitution.

  • PDF