• 제목/요약/키워드: 신경 망

검색결과 6,720건 처리시간 0.041초

감마 다층 신경망을 이용한 시스템 식별 (System Identification Using Gamma Multilayer Neural Network)

  • 고일환;원상철;최한고
    • 융합신호처리학회논문지
    • /
    • 제9권3호
    • /
    • pp.238-244
    • /
    • 2008
  • 동적 신경망은 temporal 신호처리가 요구되는 여러 분야에 사용되어 왔다. 본 논문에서는 다층 신경망의 동특성을 향상시키기 위해 감마 신경망(GAM) 다루고 있다. GAM 신경망은 순방향 다층 신경망의 히든층에 감마 메모리 커널을 사용하고 있다. GAM 신경망은 선형 및 비선형 시스템 식별을 통해 평가되었으며 상대적인 성능평가를 위해 순방향 신경망(FNN)과 리커런트 신경망(RNN)과 비교하고 있다. 실험결과에 의하면 GAM 신경망은 학습속도와 정확도에서 더 우수하게 동작하였으며, 이러한 사실은 시스템 식별에 있어서 GAM 신경망이 기존의 다른 다층 신경망보다 더 효과적인 신경망이 될 수 있음을 보여주었다.

  • PDF

Hybrid 리커런트 신경망을 이용한 시스템 식별 (System Identification Using Hybrid Recurrent Neural Networks)

  • 최한고;고일환;김종인
    • 융합신호처리학회논문지
    • /
    • 제6권1호
    • /
    • pp.45-52
    • /
    • 2005
  • 동적 신경망은 temporal 신호처리가 요구되는 여러 분야에 사용되어 왔다. 본 논문에서는 다층 리커런트 신경망(RNN)의 동특성을 더 향상시키기 위해 지역 궤환 신경망(LRNN)과 광역 궤환 신경망(GRNN)으로 구성된 합성 신경망을 사용하여 시스템 식별을 다루고 있다. 합성 신경망의 구조는 LRNN으로 IIR-MLP를, GRNN으로 Elman RNN을 결합하고 있다. 합성신경망은 선형과 비선형 시스템 식별을 통해 평가되었으며 상대적인 성능평가를 위해 Elman RNN과 IIR-MLP 신경망과 비교하고 있다. 시뮬레이션 결과에 의하면 합성 신경망은 학습속도와 정확도에서 더 우수하게 동작하였으며, 이러한 사실은 비선형 시스템 식별에 있어서 합성 신경망이 기존의 다층 리커런트 신경망보다 더 효과적인 신경망이 될 수 있음을 보여주었다.

  • PDF

Gamma 다층 신경망을 이용한 비선형 적응예측 (Nonlinear Prediction using Gamma Multilayered Neural Network)

  • 김종인;고일환;최한고
    • 융합신호처리학회논문지
    • /
    • 제7권2호
    • /
    • pp.53-59
    • /
    • 2006
  • 동적 신경망은 시스템 식별과 신호예측과 같이 temporal 신호처리가 요구되는 여러 분야에서 적용되어 왔다. 본 논문에서는 신경망의 동특성을 향상시키기 위해 순방향 다층 신경망의 히든 층에 감마(Gamma) 메모리 커넬을 사용하는 감마 신경망(GAM)을 제안하고, 적응필터로 제안된 신경망을 사용하여 비선형 적응예측을 다루고 있다. 제안된 신경망은 비선형 신호예측을 통해 평가되었으며, 예측성능의 상대적인 비교를 위해 순방향 신경망(FNN)과 리커런트 신경망(RNN)과 비교하였다. 시뮬레이션 결과에 의하면 GAM 신경망은 수렴속도와 예측의 정확도에서 이러한 신경망보다 더 우수한 동작을 수행함으로써, 제안된 신경망이 기존의 다층 신경망보다 비정적 신호에 대한 비선형 예측에 더 효과적인 예측모델임을 확인하였다.

  • PDF

신경망을 이용한 음성인식 시스템

  • 석용호;김기철;한일송;이황수
    • 정보와 통신
    • /
    • 제11권9호
    • /
    • pp.93-107
    • /
    • 1994
  • 본 글에서는 음성인식에 적용된 신경망 구조를 알아본다. 또한 신경망 VLSI와 국내에서 개발된 신경망 VLSI인 URAN에 대해서 살펴보고 URAN을 이용한 음성인식 시스템의 설계에 관해 기술한다. 시뮬레이션을 통해 낮은 정밀도의 입출력 및 연결강도, 선형 출력함수를 가지는 뉴런을 사용하는 신경망 음성인식 시스템의 성능을 분석하고 잡음 환경에서 낮은 정밀도를 사용한 신경망의 성능저하 정도를 검토한다.

  • PDF

중성자 보안검색 장치를 위한 신경망 기반의 ${\gamma}$-스펙트럼 분류 방법 (A Method for ${\gamma}$-Spectrum Classification Based on Neural Networks for Neutron-Type Security Device)

  • 최창락;김지수;김수형;심철무
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2007년도 가을 학술발표논문집 Vol.34 No.2 (C)
    • /
    • pp.451-454
    • /
    • 2007
  • 본 논문은 한국 원자력 연구소 중성자 스펙트럼 패턴을 분류하는 시스템에 신경망(Neural Networks)을 적용하였다. 중성자 스펙트럼 분석시 3개의 신경망을 하나로 결합하여 각 신경망의 인식률을 확인하였다. 신경망1은 폭발물 판별을, 신경망2는 폭발물의 종류를, 신경망3은 비 폭발물 종류를 구별하도록 시스템을 설계하였다. 중성자 스펙트럼을 통해 실험한 결과 신경망1은 83.48%를, 신경망2는 84.6%를, 신경망3은 91.67%의 인식률을 얻어 본 논문에서 제안한 시스템의 우수성을 입증하였다.

  • PDF

진화신경망을 이용한 프로그램 행위학습 및 비정상행위탐지 (Anomaly Detection and Learning of Program Behaviors with Evolutionary Neural Networks)

  • 한상준;조성배
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2004년도 봄 학술발표논문집 Vol.31 No.1 (A)
    • /
    • pp.262-264
    • /
    • 2004
  • 시스템 호출 감사자료기반 기계학습기법을 사용한 프로그램 행위 학습방법은 효과적인 호스트기반 침입탐지 방법이며, 특히 신경망은 기존 연구 중 가장 좋은 성능을 보였다. 하지만 보통의 신경망은 그 구조를 찾기 위한 방법이 알려져 있지 않아 침입탐지에 효과적인 구조를 찾기 위해서는 많은 시간이 요구된다. 본 논문에서는 기존 신경망 기반 침입탐지시스템의 단점을 보완하고 성능을 향상시키기 위해 진화신경망을 이용한 방법을 제안한다. 진화 신경망은 신경망의 구조와 가중치를 동시에 학습하기 때문에 일반 신경망보다 빠른 시간 내에 더 좋은 성능의 신경망을 얻을 수 있다는 장점이 있다. 1999년의 DARPA IDEVAL자료로 실험한 결과 기존의 연구보다 좋은 성능을 보여 진화신경망이 침입탐지에 효과적임을 확인할 수 있었다.

  • PDF

장단기 기억 신경망과 공간적 순환 신경망을 이용한 배경차분 (Background subtraction using LSTM and spatial recurrent neural network)

  • 추성권;조남익
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2016년도 추계학술대회
    • /
    • pp.13-16
    • /
    • 2016
  • 본 논문에서는 순환 신경망을 이용하여 동영상에서의 배경과 전경을 구분하는 알고리즘을 제안한다. 순환 신경망은 일련의 순차적인 입력에 대해서 내부의 루프(loop)를 통해 이전 입력에 의한 정보를 지속할 수 있도록 구성되는 신경망을 말한다. 순환 신경망의 여러 구조들 가운데, 우리는 장기적인 관계에도 반응할 수 있도록 장단기 기억 신경망(Long short-term memory networks, LSTM)을 사용했다. 그리고 동영상에서의 시간적인 연결 뿐 아니라 공간적인 연관성도 배경과 전경을 판단하는 것에 영향을 미치기 때문에, 공간적 순환 신경망을 적용하여 내부 신경망(hidden layer)들의 정보가 공간적으로 전달될 수 있도록 신경망을 구성하였다. 제안하는 알고리즘은 기본적인 배경차분 동영상에 대해 기존 알고리즘들과 비교할만한 결과를 보인다.

  • PDF

그래프 합성곱-신경망 구조 탐색 : 그래프 합성곱 신경망을 이용한 신경망 구조 탐색 (Graph Convolutional - Network Architecture Search : Network architecture search Using Graph Convolution Neural Networks)

  • 최수연;박종열
    • 문화기술의 융합
    • /
    • 제9권1호
    • /
    • pp.649-654
    • /
    • 2023
  • 본 논문은 그래프 합성곱 신경망을 이용한 신경망 구조 탐색 모델 설계를 제안한다. 딥 러닝은 블랙박스로 학습이 진행되는 특성으로 인해 설계한 모델이 최적화된 성능을 가지는 구조인지 검증하지 못하는 문제점이 존재한다. 신경망 구조 탐색 모델은 모델을 생성하는 순환 신경망과 생성된 네트워크인 합성곱 신경망으로 구성되어있다. 통상의 신경망 구조 탐색 모델은 순환신경망 계열을 사용하지만 우리는 본 논문에서 순환신경망 대신 그래프 합성곱 신경망을 사용하여 합성곱 신경망 모델을 생성하는 GC-NAS를 제안한다. 제안하는 GC-NAS는 Layer Extraction Block을 이용하여 Depth를 탐색하며 Hyper Parameter Prediction Block을 이용하여 Depth 정보를 기반으로 한 spatial, temporal 정보(hyper parameter)를 병렬적으로 탐색합니다. 따라서 Depth 정보를 반영하기 때문에 탐색 영역이 더 넓으며 Depth 정보와 병렬적 탐색을 진행함으로 모델의 탐색 영역의 목적성이 분명하기 때문에 GC-NAS대비 이론적 구조에 있어서 우위에 있다고 판단된다. GC-NAS는 그래프 합성곱 신경망 블록 및 그래프 생성 알고리즘을 통하여 기존 신경망 구조 탐색 모델에서 순환 신경망이 가지는 고차원 시간 축의 문제와 공간적 탐색의 범위 문제를 해결할 것으로 기대한다. 또한 우리는 본 논문이 제안하는 GC-NAS를 통하여 신경망 구조 탐색에 그래프 합성곱 신경망을 적용하는 연구가 활발히 이루어질 수 있는 계기가 될 수 있기를 기대한다.

뇌전증 환자의 MEG 데이터에 대한 분류를 위한 인공신경망 적용 연구 (Artificial neural network for classifying with epilepsy MEG data)

  • 한유진;김준식;김재희
    • 응용통계연구
    • /
    • 제37권2호
    • /
    • pp.139-155
    • /
    • 2024
  • 본 연구는 좌측 해마 경화를 보인 내측두엽 뇌전증(left mTLE, mesial temporal lobe epilepsy with left hippocampal sclerosis) 환자군과 우측 해마 경화를 보인 내측두엽 뇌전증(right mTLE, mesial temporal lobe epilepsy with right hippocampal sclerosis) 환자군 그리고 건강한 대조군(healthy controls; HC)으로부터 측정한 뇌자도(magnetoencephalography; MEG) 데이터로 각 그룹을 분류하는 다중 분류 작업에 다양한 인공신경망을 적용하고 그 결과를 비교해 보고자 하였다. 합성곱 신경망, 순환 신경망 그리고 그래프 신경망으로 모델링한 결과, k-fold 정확도 평균은 합성곱 신경망 기반 모델, 그래프 신경망 기반 모델, 순환 신경망 기반 모델 순으로 우수하였다. 또한, 수행 시간은 순환 신경망 기반 모델, 그래프 신경망 기반 모델, 합성곱 신경망 기반 모델 순으로 우수하였다. 정확도 성능과 시간 면에서 모두 좋은 수치를 보이며, 네트워크 데이터의 확장성이 뛰어난 그래프 신경망이 앞으로 뇌 연구에 활용되기 적합한 모델임을 강조하고자 한다.

L-시스템을 이용한 모듈형 신경망의 구조진화 (Evolution of Modualr Neural Networks by L-System)

  • 이승익;조성배
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1997년도 추계학술대회 학술발표 논문집
    • /
    • pp.127-130
    • /
    • 1997
  • 신경망은 입출력 관계가 명시적으로 표현되기 어려운 경우에 수집된 데이터를 이용하여 원래의 함수를 근사할 수 있느 특성이 있다. 최근에는 신경망의 모델링 성능을 향상시키기 위하여 여러개의 모듈을 기반으로 신경망을 구성하는 모듈형 신경망이 활발히 연구되고 있다. 본 논문에서는 린덴마이어 시스템(L-시스템)의 문법적 적용을 통하여 이러한 모듈형 신경망의 구조를 결정하는 방법을 제시하고자 한다. L-시스템은 본래 식물의 성장과정을 기술하기 위하여 제안된 방법인데, 본 논문에서는 신경망의 모듈형 구조가 L-시스템의 문법을 통하여 적절히 결정됨을 보인다.

  • PDF