본 논문에서는 비선형 마찰이 존재하는 조준경 안정화 시스템에 대해서 마찰력 보상과 성능개선을 위한 신경망제어기의 설계방법을 제시한다. 제안한 신경망제어기는 비례, 적분, 진상(PI/LEAD) 제어기와 신경회로망과의 병렬로 구성되며, 제어 목적은 비선형 마찰과 외란이 존재하여도 안정거울의 각속도 추적성능과 안정화 성능의 향상에 있다. 신경회로망의 입력으로 안정거울의 각속도 추적오차와 추적오차의 적분, 제어입력이 필터를 통과한 신호가 사용되며, 신경호로망은 간접학습구조에 의해 학습된다. 조준경 시스템의 비선형 마찰력인 쿨롱마찰력의 크기가 외부환경에 따라 변하는 경우와 시스템으로 외란이 인가되는 경우에 대하여도 제안한 병렬제어기는 기존의 PI/LEAD 제어기보다 추적과 안정화 성능면에서 우수함을 컴퓨터 모의 실험으로 확인한다.
본 논문은 DC 전동기에 공급되는 PV 시스템의 최대전력점추적에 대한 신경회로망 제어기를 제시한다. 다양한 일사량은 PV 시스템의 MPPT에 대하여 가장 중요한 요소이다. 일사량은 비선형적, 비주기적이고 복잡하다. 신경회로망은 복잡한 수학적 문제를 해결하는데 광범위하게 사용되고 있다. 제안한 태양광 발전시스템은 신경회로망 제어기, DC-DC 컨버터, DC전동기, 부하로 구성되어 있다. 신경회로망 알고리즘은 컨버터의 쵸핑비를 계산하고 DC-DC 컨버터에 적용된다. 신경회로망의 출력은 수학적 모델링에 의해 계산된 값과 비교하고 알고리즘의 타당성을 제시한다.
불확실한 비선형 다중입출력 시스템에 대해서 신경회로망을 이용한 적응출력피드백제어기법이 제안되었다. 역변환 기반의 제어입력으로부터 불확실한 비선형성을 분리하기 위해 변형된 운동 역변환 모델(Modified Dynamic Inversion Model, MDIM)이 도입되었다. MDIM은 근사된 운동 역변환 모델과 역변환 모델 오차로 구성되었고 한 개의 신경회로망이 MDIM을 보상하는데 적용되었다. 여기서 신경회로망의 출력은 필터링된 근사오차 기반의 제어기를 증대시킨다. 추적성능과 종국적 유계성(ultimate boundedness)을 보장하기 위해 리야프노프의 직접방법(Lyapunov's direct method)으로부터 유도된 온라인 가중치 적응법칙이 이용되었다. 수치적 시뮬레이션을 통해 본 논문의 타당성을 검증하였다.
신경회로망을 이용한 XY 테이블의 비선형 보상기법을 제안한다. 제안된 신경망 제어기는 시스템의 비선형 성분에 의한 성능저하를 보상하는 신경회로망과 시스템의 안정화를 위한 비례미분(PD) 제어기로 구성된다. 신경망 보상 구조가 적응적이고 추적오차와 파라미터 추정치가 유계가 되는 신경망 파라미터 동조알고리듬과 안정도 증명을 제시한다. 신경망 제어기를 위치 테이블에 실험함으로써 비선형 성분에 의한 성능저하를 줄이는 효과를 보여준다.
미래의 로봇 산업은 기존 자동화 산업 뿐만 아니라 안내, 보안 등의 가정, 공공기관 또는 우주, 심해 등에서 인간을 대신할 대안으로 활용되어질 전망이다. 이는 기존의 단순반복에서 벗어나 자율이동, 자기학습 등이 가능하도록 개발되어야 한다. 본 논문에서는 로봇을 공공기관에서의 안내, 보안 또는 위험현장, 군사용으로 적용하기 위해 필요한 기술인 자율이동시스템을 개발하였다. 로봇이 자율이동하기 위해서는 자기위치추적, 장애물 탐지 및 회피 기술이 필요하다. 이를 위해 초음파센서를 이용해 로봇을 탐지 시스템을 구성하였으며 LM신경회로망 제어기를 사용하여 로봇의 이동을 제어하였다. 또한 시뮬레이션을 통해 장애물 회피능력과 이동성능 결과를 검증하였다.
본 논문에서는 로봇 매니퓰레이터의 제어에 사용할 수 있는 신경망 외란 관측기를 제안하도록 한다. 제안한 신경망 외란 관측기는 다층신경 망의 구조로 신경망 외란관측기의 오차와 제어 오차가 충분히 작은 콤팩트 집합에 절대 상시 유계된다. 본 논문에서 제안하는 신경망 외란 관측기는 기존의 적응 제어기의 단점을 해결한 방식으로 복잡한 회귀 모델을 필요로 하지 않는다. 끝으로 제안한 방식을 3관절 로봇에 적용하여 그 타당성을 확인한다.
본 논문에서는 새로운 방식의 적응형 순항제어 필터링 방식을 제안한다. 제안한 알고리즘은 선행 차량의 모드를 추정하는 문제를 분류기의 문제로 보고 신경망 분류기를 이용하여 이를 수행한다. 신경망은 각 모드에 대한 사후 확률을 출력하며 이를 IMM과 결합하여 선행차량의 추적을 수행한다. 끝으로 10가지 시나리오에 대하여 신경망 분류기와 IMM을 결합한 NIMM (Neural Network IMM)을 적용하여 성능을 확인한다.
This paper proposes a design of the tracking controller using artificial neural network and the compare the result with a result of optimal controller. In practical use, conventional Optimal controller has some limits. First, optimal controller can be designed only for linear system. Second, for many systems state observation is difficult or sometimes impossible. But the controller using artificial neural network does not need mathmatical model of the system including state observation, so it can be used for both linear and nonlinear system with no additional cost for nonlinearity. Designed multi layer neural network controller is composed of two parts, feedforward controller gives a steady state input & feedback controller gives transient input via minimizing the quadratic cost function. From the comparison of the results of the simulation of linear & nonlinear plant, the plant controlled by using neural network controller shows the trajectory similar to that of the plant controlled by an optimal controller.
로봇 시스템의 신경망 포화 및 퍼지 데드존 보상기를 제안한다. 퍼지논리 함수의 분류특성과 신경회로망의 함수 근사화 능력은 포화와 데드존에 의해 유발되는 오자를 제거하기 위한 보상기 설계를 가능케 한다. 포화 및 데드존 보상이 적응적이고 추적오차와 파라미터 추정 치가 유계가 되는 신경망 가중치와 퍼지논리 파라미터 동조알리리듬과 안정도 증명을 제시한다. 신경망 포화 및 퍼지 데드존 보상기를 모의실험으로 포화 및 데드존의 해로운 영향을 줄이는 효과를 보여 준다.
In this paper, 150W photovoltaic system using neural network tracker is proposed, the system designed as the normal line of the solar cell always runs parallel the ray of the sun. This design can minimize the cosine loss of the system output results of solar cell are sensitive to the change of weather and insolation condition don't react rapidly to parameter condition change such as system circumstance and deterioration. To achieve precise operation of photovoltaic tracker system using method of intelligent control, Neural Network is used in the design of the photovoltaic tracker system drive. The control performance of this system drive influenced by the environment parameter such as weather condition and motor parameter variations. we used synchronous motor in this tracker and the experimental results show that the fixing system shows 10,159[Wh] and tracking system shows 12,360[Wh] electricity.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.