• 제목/요약/키워드: 신경회로망 추적기

검색결과 18건 처리시간 0.022초

비선형 마찰이 존재하는 조준경 안정화 시스템의 신경망 제어기 설계 (Neuro-controller design for the line of sight stabilization system containing nonlinear friction)

  • 장준오;전병균;전기준
    • 제어로봇시스템학회논문지
    • /
    • 제3권2호
    • /
    • pp.139-148
    • /
    • 1997
  • 본 논문에서는 비선형 마찰이 존재하는 조준경 안정화 시스템에 대해서 마찰력 보상과 성능개선을 위한 신경망제어기의 설계방법을 제시한다. 제안한 신경망제어기는 비례, 적분, 진상(PI/LEAD) 제어기와 신경회로망과의 병렬로 구성되며, 제어 목적은 비선형 마찰과 외란이 존재하여도 안정거울의 각속도 추적성능과 안정화 성능의 향상에 있다. 신경회로망의 입력으로 안정거울의 각속도 추적오차와 추적오차의 적분, 제어입력이 필터를 통과한 신호가 사용되며, 신경호로망은 간접학습구조에 의해 학습된다. 조준경 시스템의 비선형 마찰력인 쿨롱마찰력의 크기가 외부환경에 따라 변하는 경우와 시스템으로 외란이 인가되는 경우에 대하여도 제안한 병렬제어기는 기존의 PI/LEAD 제어기보다 추적과 안정화 성능면에서 우수함을 컴퓨터 모의 실험으로 확인한다.

  • PDF

PV 시스템의 최대전력점 추적을 위한 신경회로망 제어기 개발 (Development of Neural Network Controller for Maximum Power Point Tracking of PV System)

  • 고재섭;최정식;정동화
    • 조명전기설비학회논문지
    • /
    • 제23권1호
    • /
    • pp.41-48
    • /
    • 2009
  • 본 논문은 DC 전동기에 공급되는 PV 시스템의 최대전력점추적에 대한 신경회로망 제어기를 제시한다. 다양한 일사량은 PV 시스템의 MPPT에 대하여 가장 중요한 요소이다. 일사량은 비선형적, 비주기적이고 복잡하다. 신경회로망은 복잡한 수학적 문제를 해결하는데 광범위하게 사용되고 있다. 제안한 태양광 발전시스템은 신경회로망 제어기, DC-DC 컨버터, DC전동기, 부하로 구성되어 있다. 신경회로망 알고리즘은 컨버터의 쵸핑비를 계산하고 DC-DC 컨버터에 적용된다. 신경회로망의 출력은 수학적 모델링에 의해 계산된 값과 비교하고 알고리즘의 타당성을 제시한다.

신경회로망을 이용한 무인헬리콥터의 적응출력피드백제어 (Adaptive Output Feedback Control of Unmanned Helicopter Using Neural Networks)

  • 박범진;홍창호;석진영
    • 한국항공우주학회지
    • /
    • 제35권11호
    • /
    • pp.990-998
    • /
    • 2007
  • 불확실한 비선형 다중입출력 시스템에 대해서 신경회로망을 이용한 적응출력피드백제어기법이 제안되었다. 역변환 기반의 제어입력으로부터 불확실한 비선형성을 분리하기 위해 변형된 운동 역변환 모델(Modified Dynamic Inversion Model, MDIM)이 도입되었다. MDIM은 근사된 운동 역변환 모델과 역변환 모델 오차로 구성되었고 한 개의 신경회로망이 MDIM을 보상하는데 적용되었다. 여기서 신경회로망의 출력은 필터링된 근사오차 기반의 제어기를 증대시킨다. 추적성능과 종국적 유계성(ultimate boundedness)을 보장하기 위해 리야프노프의 직접방법(Lyapunov's direct method)으로부터 유도된 온라인 가중치 적응법칙이 이용되었다. 수치적 시뮬레이션을 통해 본 논문의 타당성을 검증하였다.

XY 테이블의 신경망제어 (Neuro-controller for a XY positioning table)

  • 장준오
    • 한국지능시스템학회논문지
    • /
    • 제14권3호
    • /
    • pp.375-382
    • /
    • 2004
  • 신경회로망을 이용한 XY 테이블의 비선형 보상기법을 제안한다. 제안된 신경망 제어기는 시스템의 비선형 성분에 의한 성능저하를 보상하는 신경회로망과 시스템의 안정화를 위한 비례미분(PD) 제어기로 구성된다. 신경망 보상 구조가 적응적이고 추적오차와 파라미터 추정치가 유계가 되는 신경망 파라미터 동조알고리듬과 안정도 증명을 제시한다. 신경망 제어기를 위치 테이블에 실험함으로써 비선형 성분에 의한 성능저하를 줄이는 효과를 보여준다.

자율 이동이 가능한 LM신경망 로봇 제어기 (LM Neural network robot controller for self-navigation)

  • 유성구;정길도;김영철
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.255-256
    • /
    • 2008
  • 미래의 로봇 산업은 기존 자동화 산업 뿐만 아니라 안내, 보안 등의 가정, 공공기관 또는 우주, 심해 등에서 인간을 대신할 대안으로 활용되어질 전망이다. 이는 기존의 단순반복에서 벗어나 자율이동, 자기학습 등이 가능하도록 개발되어야 한다. 본 논문에서는 로봇을 공공기관에서의 안내, 보안 또는 위험현장, 군사용으로 적용하기 위해 필요한 기술인 자율이동시스템을 개발하였다. 로봇이 자율이동하기 위해서는 자기위치추적, 장애물 탐지 및 회피 기술이 필요하다. 이를 위해 초음파센서를 이용해 로봇을 탐지 시스템을 구성하였으며 LM신경회로망 제어기를 사용하여 로봇의 이동을 제어하였다. 또한 시뮬레이션을 통해 장애물 회피능력과 이동성능 결과를 검증하였다.

  • PDF

신경회로망을 이용한 불확실한 로봇 추적 제어 (Tracking Control of an Uncertain Robot via Neural Network)

  • 김은태;이희진;김승우
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 합동 추계학술대회 논문집 정보 및 제어부문
    • /
    • pp.297-300
    • /
    • 2001
  • 본 논문에서는 로봇 매니퓰레이터의 제어에 사용할 수 있는 신경망 외란 관측기를 제안하도록 한다. 제안한 신경망 외란 관측기는 다층신경 망의 구조로 신경망 외란관측기의 오차와 제어 오차가 충분히 작은 콤팩트 집합에 절대 상시 유계된다. 본 논문에서 제안하는 신경망 외란 관측기는 기존의 적응 제어기의 단점을 해결한 방식으로 복잡한 회귀 모델을 필요로 하지 않는다. 끝으로 제안한 방식을 3관절 로봇에 적용하여 그 타당성을 확인한다.

  • PDF

신경회로망을 이용한 다중모델 차량추적 시스템 (Interacting Multiple Model Vehicle-Tracking System Based on Neural Network)

  • 황재필;박성근;김은태
    • 한국지능시스템학회논문지
    • /
    • 제19권5호
    • /
    • pp.641-647
    • /
    • 2009
  • 본 논문에서는 새로운 방식의 적응형 순항제어 필터링 방식을 제안한다. 제안한 알고리즘은 선행 차량의 모드를 추정하는 문제를 분류기의 문제로 보고 신경망 분류기를 이용하여 이를 수행한다. 신경망은 각 모드에 대한 사후 확률을 출력하며 이를 IMM과 결합하여 선행차량의 추적을 수행한다. 끝으로 10가지 시나리오에 대하여 신경망 분류기와 IMM을 결합한 NIMM (Neural Network IMM)을 적용하여 성능을 확인한다.

인공 신경회로망을 이용한 추적 제어기의 구성 및 최적 추적 제어기와의 비교 연구 (Design of tracking controller Using Artificial Neural Network & comparison with an Optimal Track ing Controller)

  • 박영문;이규원;최면송
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1993년도 하계학술대회 논문집 A
    • /
    • pp.51-53
    • /
    • 1993
  • This paper proposes a design of the tracking controller using artificial neural network and the compare the result with a result of optimal controller. In practical use, conventional Optimal controller has some limits. First, optimal controller can be designed only for linear system. Second, for many systems state observation is difficult or sometimes impossible. But the controller using artificial neural network does not need mathmatical model of the system including state observation, so it can be used for both linear and nonlinear system with no additional cost for nonlinearity. Designed multi layer neural network controller is composed of two parts, feedforward controller gives a steady state input & feedback controller gives transient input via minimizing the quadratic cost function. From the comparison of the results of the simulation of linear & nonlinear plant, the plant controlled by using neural network controller shows the trajectory similar to that of the plant controlled by an optimal controller.

  • PDF

로봇 시스템의 신경망 포화 및 퍼지 데드존 보상 (NN Saturation and FL Deadzone Compensation of Robot Systems)

  • 장준오
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.187-192
    • /
    • 2008
  • 로봇 시스템의 신경망 포화 및 퍼지 데드존 보상기를 제안한다. 퍼지논리 함수의 분류특성과 신경회로망의 함수 근사화 능력은 포화와 데드존에 의해 유발되는 오자를 제거하기 위한 보상기 설계를 가능케 한다. 포화 및 데드존 보상이 적응적이고 추적오차와 파라미터 추정 치가 유계가 되는 신경망 가중치와 퍼지논리 파라미터 동조알리리듬과 안정도 증명을 제시한다. 신경망 포화 및 퍼지 데드존 보상기를 모의실험으로 포화 및 데드존의 해로운 영향을 줄이는 효과를 보여 준다.

  • PDF

지능형 제어기법을 이용한 태양추적시스템에 관한 연구 (A study on the Photovoltaic Tracker System Using Method of Intelligent control)

  • 김평호;백형래;조금배
    • 한국태양에너지학회 논문집
    • /
    • 제25권1호
    • /
    • pp.1-10
    • /
    • 2005
  • In this paper, 150W photovoltaic system using neural network tracker is proposed, the system designed as the normal line of the solar cell always runs parallel the ray of the sun. This design can minimize the cosine loss of the system output results of solar cell are sensitive to the change of weather and insolation condition don't react rapidly to parameter condition change such as system circumstance and deterioration. To achieve precise operation of photovoltaic tracker system using method of intelligent control, Neural Network is used in the design of the photovoltaic tracker system drive. The control performance of this system drive influenced by the environment parameter such as weather condition and motor parameter variations. we used synchronous motor in this tracker and the experimental results show that the fixing system shows 10,159[Wh] and tracking system shows 12,360[Wh] electricity.