• Title/Summary/Keyword: 신경회로망 제어

Search Result 616, Processing Time 0.036 seconds

A Study on Driving Control using Neural Network Identifier (신경회로망 동정기를 이용한 AGV의 주행제어에 관한 연구)

  • 이영진;이진우;손주한;최성욱;김한근;조현철;이권순
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.151-151
    • /
    • 2000
  • The objective of this paper is to develop the new robust and adaptive control system against external environments as applying the probabilistic recognition which is one of the inherent properties of immune system, ability of learning and memorization, and regulation theory of immune network to the system under engineering point of view. In this paper, HIA(Humoral Immune Algorithm) PID controller using Neural Network Identifier was proposed to drive the autonomous guided vehicle(AGV) more effectively. To verify the performance of the proposed HIA PID controller, some experiments for the control of steering and speed of that AGV are performed.

  • PDF

Development of the Neural Network Steering Controller based on Magneto-Resistive Sensor of Intelligent Autonomous Electric Vehicle (자기저항 센서를 이용한 지능형 자율주행 전기자동차의 신경회로망 조향 제어기 개발)

  • 김태곤;손석준;유영재;김의선;임영철;이주상
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.196-196
    • /
    • 2000
  • This paper describes a lateral guidance system of an autonomous vehicle, using a neural network model of magneto-resistive sensor and magnetic fields. The model equation was compared with experimental sensing data. We found that the experimental result has a negligible difference from the modeling equation result. We verified that the modeling equation can be used in simulations. As the neural network controller acquires magnetic field values(B$\_$x/, B$\_$y/, B$\_$z/) from the three-axis, the controller outputs a steering angle. The controller uses the back-propagation algorithms of neural network. The learning pattern acquisition was obtained using computer simulation, which is more exact than human driving. The simulation program was developed in order to verify the acquisition of the teaming pattern, teaming itself, and the adequacy of the design controller. The performance of the controller can be verified through simulation. The real autonomous electric vehicle using neural network controller verified good results.

  • PDF

Design of an Intelligent Robot Control System Using Neural Network (신경회로망을 이용한 지능형 로봇 제어 시스템 설계)

  • 정동연;서운학;한성현
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.279-279
    • /
    • 2000
  • In this paper, we have proposed a new approach to the design of robot vision system to develop the technology for the automatic test and assembling of precision mechanical and electronic parts fur the factory automation. In order to perform real time implementation of the automatic assembling tasks in the complex processes, we have developed an intelligent control algorithm based-on neural networks control theory to enhance the precise motion control. Implementing of the automatic test tasks has been performed by the real-time vision algorithm based-on TMS320C31 DSPs. It distinguishes correctly the difference between the acceptable and unacceptable defective item through pattern recognition of parts by the developed vision algorithm. Finally, the performance of proposed robot vision system has been illustrated by experiment for the similar model of fifth cell among the twelve cell fur automatic test and assembling in S company.

  • PDF

Experimental Studies of Vision Based Position Tracking Control of Mobile Robot Using Neural Network (신경회로망을 이용한 비전 기반 이동 로봇의 위치제어에 대한 실험적 연구)

  • Jung, Seul;Jang, Pyung-Soo;Won, Moon-Chul;Hong, Sub
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.7
    • /
    • pp.515-526
    • /
    • 2003
  • Tutorial contents of kinematics and dynamics of a wheeled drive mobile robot are presented. Based on the dynamic model, simulation studies of position tracking of a mobile robot are performed. The control structure of several position control algorithms using visual feedback are proposed and their performances are compared. In order to compensate for uncertainties from unknown dynamics and ignored dynamic effects such as slip conditions, neural network based position control schemes are proposed. Experiments are conducted and the results show the performance of the vision based neural network control scheme fumed out to be the best among several proposed schemes.

Hybrid position/force control of uncertain robotic systems using neural networks (신경회로망을 이용한 불확실한 로봇 시스템의 하이브리드 위치/힘 제어)

  • Kim, Seong-U;Lee, Ju-Jang
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.3
    • /
    • pp.252-258
    • /
    • 1997
  • This paper presents neural networks for hybrid position/force control which is a type of position and force control for robot manipulators. The performance of conventional hybrid position/force control is excellent in the case of the exactly-known dynamic model of the robot, but degrades seriously as the uncertainty of the model increases. Hence, the neural network control scheme is presented here to overcome such shortcoming. The introduced neural term is designed to learn the uncertainty of the robot, and to control the robot through uncertainty compensation. Further more, the learning rule of the neural network is derived and is shown to be effective in the sense that it requires neither desired output of the network nor error back propagation through the plant. The proposed scheme is verified through the simulation of hybrid position/force control of a 6-dof robot manipulator.

  • PDF

Experimental Studies of Balancing an Inverted Pendulum and Position Control of a Wheeled Drive Mobile Robot Using a Neural Network (신경회로망을 이용한 이동로봇 위의 역진자의 각도 및 로봇 위치제어에 대한 연구)

  • Kim, Sung-Su;Jung, Seul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.10
    • /
    • pp.888-894
    • /
    • 2005
  • In this paper, experimental studies of balancing a pendulum mounted on a wheeled drive mobile robot and its position control are presented. Main PID controllers are compensated by a neural network. Neural network learning algorithm is embedded on a DSP board and neural network controls the angle of the pendulum and the position of the mobile robot along with PID controllers. Uncertainties in system dynamics are compensated by a neural network in on-line fashion. Experimental results show that the performance of balancing of the pendulum and position tracking of the mobile robot is good.

Nonlinear Predictive Control with Multiple Models (다중 모델을 이용한 비선형 시스템의 예측제어에 관한 연구)

  • Shin, Seung-Chul;Bien, Zeung-Nam
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.38 no.2
    • /
    • pp.20-30
    • /
    • 2001
  • In the paper, we propose a predictive control scheme using multiple neural network-based prediction models. To construct the multiple models, we select several specific values of a parameter whose variation affects serious control performance in the plant. Among the multiple prediction models, we choose one that shows the best predictions for future outputs of the plant by a switching technique. Based on a nonlinear programming method, we calculate the current process input in the nonlinear predictive control system with multiple prediction models. The proposed control method is shown to be very effective when a parameter of the plant changes or the time delay, if it exists, varies. It is also shown that the proposed method is successfully applied for the control of suspension in a electro-magnetic levitation system.

  • PDF

The Study on Intelligent Horizontal Position Control using Image Processing and CAN Communication (영상처리와 CAN 통신을 이용한 지능형 수평자세제어에 관한 연구)

  • Kim, Gwan-Hyung;Kwon, Oh-Hyun;Sin, Dong-Suk;Kim, Wan-Sik;Oh, Am-Suk;Byun, Gi-Sik
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.115-117
    • /
    • 2013
  • 수평자세제어에 대한 활용은 다양한 진동이 발생하는 환경에서 정확한 수평제어를 필요로 하는 모든 분야에 활용할 수 있다. 이러한 수평제어에 대한 문제는 다수의 액추에이터(Actuator)를 어떠한 방법으로 제어하는가에 따라 그 성능이 달라지며, 발생한 외란에 대하여 어떠한 방법으로 외란을 계측하고 특성을 분석하는 것이 무엇보다 중요하다. 이러한 비선형성이 강한 수평자세제어에 대하여 인공지능기법인 신경회로망의 학습기능을 활용하여 그 수평자세 제어에 대한 성능을 연구하고 있는 추세에 있다. 본 논문에서는 고속이며 신뢰성을 보장하고 있는 CAN 통신방식을 활용하여 3개의 리니어 액추에이터(Linear Actuator)를 동시에 제어하도록 하고, 플랜트의 기울어진 상태는 자이로센서를 활용하여 플랜트의 상태를 지능적으로 판단하게 하였다. 또한 플랜트에 발행하는 왜란은 수평자세제어를 위한 플랜트 위에 볼(ball)을 놓아 비선형적인 왜란이 발생하도록 하였다. 이러한 왜란에 대하여 영상처리 기법을 활용하여 지능적으로 제어하도록 하여 CAN 통신의 활용성과 영상처리시스템(Image Processing System)의 활용성 및 지능제어의 활용성을 제시하고자 한다.

  • PDF

Realization of the Dynamic Control System for the Neural Network Analysis of the Cerebellum (소뇌의 신경회로망 해석을 위한 운동제어계의 실현)

  • 이명호
    • Journal of Biomedical Engineering Research
    • /
    • v.2 no.1
    • /
    • pp.47-54
    • /
    • 1981
  • This paper deals with a new approach to the modelling of neural interactions in the cerebellar cortex to construct a general purpose electronic simulation model. Since physiological data show that cerebellar neural activity changes in an approximately pulse manner in response to pulse stimulation, the differences in timing between excitation and inhibition of cerebellar cells will be treated as pure time delays and the transfer functions of the cells will be presented by pure gains. The parameters to be discussed in this paper are the coupling coefficients between a cell and its several inputs, the magnitude of a coupling coefficient which is presented as a measure of how much influnce a particular has on its target cell. And also this paper has been proposed that the cerrbellum engaged in improving the overall performance of the motor control system, i.e., the cerebellum is a compensator.

  • PDF

ANN Sensorless Control of Induction Motor with AFLC Controller (AFLC 제어기에 의한 유도전동기의 ANN 센서리스 제어)

  • Choi, Jung-Sik;Ko, Jae-Sub;Chung, Dong-Hwa
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.3
    • /
    • pp.224-232
    • /
    • 2006
  • The paper proposes the artificial neural network(ANN) sensorless control of induction motor drive with adaptive fuzzy logic controller(AFLC). Also, this paper proposes the speed control of induction motor using AFC and estimation of speed using ANN controller. The back propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. The error between the desired state variable and the actual one is back-propagated to adjust the rotor speed, so that the actual state variable will coincide with the desired one. The proposed control algorithm is applied to induction motor drive system controlled AFLC and him controller. And this paper is proposed the results to verify the effectiveness of the AFLC and ANN controller.